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1. EXECUTIVE SUMMARY

A travel demand anadlysis conssts of assessing four components of the travel pattern for a study
area i) trip generation (TG) or where trips are coming from; ii) trip distribution (TD) or
wheretrips are going to; iii) modal split (MS) or the shares among available modes for the flow
between origin-destination (O-D) pairs; and, iv) network assignment (NA) or the route choice
within each mode. The gandard “ state-of-the-practice” in travel demand modeling is the
sequentid or four-step approach. This modding drategy estimates the four trave demand
components sequentially and feeds the results from one component to the next component in the
sequence. Unfortunately, the four-step approach is flawed. A particularly severe problem
is potentid inconsstency among the travel demand component estimates. Another problem is
that prediction errors from any component are compounded in each subsequent stage,
potentidly leading to substantia errorsin latter Sages.

While the inherent flaws in the four-step gpproach are recognized widely, an exigting,
viable dterndive is not widey known. The equilibrium travel demand modeling approach
embeds the travel demand components in the four-step gpproach within a market equilibrium
framework. This generates consstent answers among the four travel demand components. The
familiar components from the four-stage approach are preserved; the additiona theory and
modeling framework ssimply enforces consstency among these components.  Achieving this
consistency in general does not require substantial increases in computational resources
nor data inputs

This research report addresses the gap between the state-of-the-art and the state-of-
the-practice in travel demand modding. This report is an accessible review of the theory and
practice of equilibrium travel demand modding. This review is intended for practitioners and
beginning students in transportation anadysis, modeling and planning. Key festures of this review
include i) afocuson practical travel demand models, i.e., models that can be implemented a
the urban or regiond-scae; ii) a focus on the behaviord assumptions, data regquirements,
parameter estimation procedures and solution procedures that are key to mode application.; iii)
placement of mathematica formulae are in gppendices, alowing the less mathematicaly-incline
reader to skip the formulae but il receive an intuitive understanding of the models structures.
These features should render this review accessible to its intended audience, transportation
andysts and planners.

This report firgt reviews the theoretica conditions for network flow equilibrium (i.e, the
NA phase of the four-step approach) and the overadl market equilibrium for the remaining travel
demand components (MS, TD, TG) based on the assumed network equilibrium. The available
network equilibrium principles include:

i) User optimal-strict (UO-S): At network equilibrium, no traveler can
reduce his or her travel costs by unilaterdly changing routes (i.e., changing
routes independently without other users route changes);



i) User optimal-general (UO-G): Travelers change routes in the next time
period in a manner that reduces total cost based on the current route
costs

ii) Dynamic user optimal (DUO): At network equilibrium, no traveler who
departed during the same time interval can reduce his or her travel costs
by unilaeraly changing routes;

Iv) Sochastic user optimal (SUO): At network equilibrium, no traveler can
reduce his or her perceived travel codts by unilaterdly changing routes.

These network equilibrium principles can be linked in a theoreticaly consgtent manner to
equilibrium conditions for the higher-level travel demands. Modds that do not enforce this
smultaneous equilibrium are misspecified and consequently flawed. Empirica evidence going as
far back as the 1970's suggedts that the four-step approach suffers from misspecification,
nonconvergence and error.

Combined travel demand models can be derived based on the each assumed network
equilibrium. The following table summarizes the modes reviewed in this report:

Travel demand components

Network NA NA/MS NA/MS/TD NA/MSITD/ITG

equilibrium class

Uo-s Sheffi (1985) Evans (1976) Florian and [ STEM (Safwat and
Nguyen (1978) Magnanti 1988)

Uuo-G T2 (Did 1995b) Dafermos (1980) Dafermos (1982)

DUO Janson (1991 a,b)

SUO Fisk (1980) Super- and hyper-networks (Sheffi and Daganzo 1980)

UO-5SUO Trip consumer approach (Oppenheim 1995)

The equilibrium travel demand modds discussed generdly follow an equivdent
optimization gpproach. This drategy first specifies a combined travel demand mode then
derives an equivaent optimization problem whose solution corresponds to a market equilibrium
of the oecified travel demand componentsin the initid modd. Typicdly, this problem contains
a objective function to be minimized and congraints that represent flow and aggregate demand
feagbility requirements. In the interest of brevity and due to the pragmatic orientation of this
report, this section only discusses the equivadent optimization problems. The report discusses
the models from the perspective of: i) basic assumptions; ii) model structure; iii) data
requirements and parameter estimation; and iv) solution procedure.

After discussing the basic characteristics of each modd, this report compares the travel
demand methods based on severa criteria.  The comparison provides guidance for model




seection and use, dthough it does not provide a definitive answer. Comparison of the travel
demand modds uses the following criteria 1) basic theory or the mgor drengths and
weaknesses of the modelds theoreticd base; i) mathematical elegance or the parsmony and
flexibility of the moddids formdiam; iii) computational requirements and performance,
including the basic procedurd needs of each modelds dgorithm as wdl as performance
efficency; and, iv) data requirements and parameter estimation.

Although this report’s objective is an accessble review of equilibrium travel demand
models rather than the research frontiers, this review nevertheess suggests three major research
and development issues. Thisincludes: i) specification and development of a computational
toolkit for equilibriumtravel demand modeling; ii) development of a travel demand model
testbed; and, iii) development of a combined statistical distribution theory and
simultaneous parameter estimation procedures. The firgt issue concerns the specification and
development of a toolkit that can support several of the equilibrium travel demand modds
within the same computationa platform. Ingead of forcing a travel demand anayss into the
mode avalable within a given GIS software, this would adlow the practitioner to access the
mode or models most appropriate for the research question at hand. The second issue, closely
related to the firgt, concerns support for extensve testing of equilibrium travel demand models
aswell as other competing approaches.

The third research and development issue addresses a weskness of equilibrium travel
demand modds, specificdly, a lack of datidtica didribution theory for the combined trave
demand components within each equilibrium moded. This weakness is shared with the 4-step
gpproach: a condstent combined datigtica didtribution theory does not exigt for the sequentia
travel demand estimation procedure. However, this weakness is not as gpparent in the 4-step
gpproach since it atificidly separates the travel demand modding components.  When these
components are embedded in an equilibrium framework, this weakness becomes more obvious.
Some discussion of these combined estimation issues does exist in the literature. However, no
exiging model has a combined datidicd digtribution theory and an efficient and unbiased
smultaneous egtimation procedure for al parameters.  Continued research dong this line is
required for effective gpplication of equilibrium travel demand models.
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6. INTRODUCTION

A travel demand anadlysis conssts of assessing four components of the travel pattern for a study
area 1) trip generation (TG) or where trips are coming from; ii) trip distribution (TD) or
where trips are going to; iii) modal split (MS) or the shares among available modes for the flow
between origin-destination (O-D) pairs; and, iv) network assignment (NA) or the route choice
within each mode. Assessing these components provides ingight into the effectiveness of
transportation policy and the performance of transportation infrastructure.  In addition, being
able to predict these components through modeling can dlow the planner or policy andys to
pose “what-if?" scenarios regarding infrastructure, land use and/or policy changes and estimate
the resulting impacts on travel patterns.

The standard “date-of-the-practice” in travel demand modeling is the sequentid or
four-step approach. This modding drategy estimates the four travel demand components
sequentidly and feeds the results from one component to the next component in the sequence.
A common sequence is TGETDZMSZENA; this gpproach is embodied in the urban
transportation modeling system (UTMS) drategy and commercid software that implement
this Srategy.

Unfortunately, the four-step approach is flawed. A particularly severe problem is
potentid inconsstency among the travel demand component estimates.  Since the four-step
approach does not require internd congstency among the four estimated components, it is not
likely to occur in practice. For example, the NA phase changes network travel costs which will
no longer be consstent with the travel costs used for the TG, TD and MS phases. A common
response is to use feedback loops and “cycle-back” answers to previous steps for additiona
rounds of estimation. However, this gill does not guarantee convergence to a consstent
answer. Another problem is that prediction errors from any component are compounded in
each subsequent stage, potentially leading to subgtantid errors in latter stages (Fernandez and
Friesz 1983; Sheppard 1995). These theoretica flaws have been substantiated by empirica
evidence. As far back as the mid-seventies, Forian, Nguyen and Ferland (1975) found
empirical evidence that sequentid estimation with feedback of TD-NA does not converge.
More recently, empirica benchmarking by COMSIS (1996) and Boyce, Zhang and Lupa
(1994) found that sequentid estimation results in inferior predictions of key output variables
such astraffic flow on links.

The inherent weakness of the four-step approach is recognized widely. For example,
the U.S. Department of Trangportation, in cooperation with the U.S. Environmental Protection
Agency and U.S. Department of Energy, has created the travel model improvement program
(TMIP) to respond to requirements of the 1991 Clean Air Act and the 1991 Intermodal
Surface Trangportation Efficiency (ISTEA) Act. A short-term improvement identified by this
program is improving the feedback loop drategy in the four-step approach. Long-term
improvements include the development of the “next-generation” of travel demand modds, i.e,
moving beyond the four-step gpproach. One initiative from the long-term improvement



program is TRANSIMS, a cdlular automata-based microsimulation travel model (Barrett et al.
1995).

While the inherent flaws in the four-step approach are recognized widdly, dternativesto
this gpproach are not widdy known. Although next-generation modeling initiatives have great
merit, there is little awareness of an existing modeling strategy that directly addresses the mgor
flaws in the four-step approach. The modeling drategy is the equilibrium travel demand
modeling approach. This strategy embeds the travel demand components in the four-step
gpproach within a market equilibrium framework. This “smultaneous estimation” approach
generates condgtent answers among the four travel demand components. The familiar
components from the four-stage approach are preserved; the additiona theory and modeing
framework smply enforces consstency among these components.  Achieving this consistency
in general does not require substantial increases in computational resources nor data
inputs. Thus, planners and andyst who are familiar with the four-stage approach can eadly
understand the equilibrium approach.

The equilibrium travel demand approach has been present in the literature for over three
decades. The initid theory was developed in the fifties (Beckmann, McGuire and Wingen
1956; Wardrop 1952). Practicadl models have existed since the mid-seventies (Evans 1976;
Florian and Nguyen 1978). Recently, substantia improvements in this gpproach have been
achieved; these improvements include: i) encompassing dl four travel demand components
(Safwat and Magnanti 1988); i) linking the travel demand equilibrium to individua-leve choice
theory (Oppenheim 1995); and, iii) improving the network flow principles & the bass of the
market equilibrium, including more redidic treetment of route choice behavior (Did 19953,
1995b, 1996) and extensions to dynamic network flows (Janson 1991a, 1991b).

Despite the long history of equilibrium travel demand modds and the flurry of recent
research progress, this practicd modeling drategy is dmost completdy unknown to
practitioners and not widely known even to trangportation academics. Part of the reason is
undoubtedly due to inertia created through the UTMS initiative and readily avallable software
that implement this drategy. However, a very large part of the blame must rest with the
academics and scientists who develop the state-of-the-art in these models but do not attempt to
disseminate this information to practitioners. While severd excellent reviews of the equilibrium
approach exist (Boyce 1984; Boyce, LeBlanc and Chon 1988; Fernandez and Friesz 1983,
Friesz 1985) these are somewhat dated and (more importantly) are oriented towards academics
and scientists who are interested in the extending the modeling frontier. Consequently, these
reviews are not accessible to practitioners.  This lack of information flow has hampered the
improvement of the Sate-of-the-practice in travel demand modding.

This research report attempts to address the gap between the state-of-the-art and the
date-of-the-practice in travel demand modding. This report is an accessible review of the
theory and practice of equilibrium travel demand modeling. This review is intended for
practitioners and beginning students in trangportation andyss, modding and planning. Key
features of thisreview include:
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i) A focuson practical travel demand models. In this case, “practicd” refers
to models that can be implemented at the urban or regiona-scale without
undue computational or data requirements beyond the four-step approach.
This sdective review focuses on these practicd modds, dthough in two
cases currently impractica but very promisng modds are included for
completeness.

i) Discusson focuses on the behaviord assumptions, data requirements,
parameter estimation procedures and solution procedures that are key to
modd gpplication.

i) Mathematica formulae are placed in appendices and are cross-referenced
and explaned verbaly within the report body. This dlows the less
mathematicaly-inclined reader to skip the formulae but ill receive an
intuitive understanding of the modds dructures. Conversdly, the more
mathematicaly-inclined reader can follow the crossreferences to the
corresponding formulae. The crossreferencing system uses an equation
labeling scheme that maintains the section and equation number (eg., ( 12-
1) is Section 12, equation 1).

These features should render this review accessible to its intended audience, transportation
andydgs and planners.

Section 7 of this report explains the basic theory underlying equilibrium travel demand
modding. Thisincludes discusson of: i) basic trangportation system dements; i) different types
of network equilibria; and iii) detailed discusson of travel demand market equilibrium and the
weaknesses of the four-step approach. Section 8 congtitutes the mgor portion of this report.
This section discusses severd mgor equilibrium travel demand models, with the discusson
organized by the type of network equilibrium a each modd’s basis. Discussion of each modd
includes, 1) mgor assumptions, i) modd dructure; iii) data requirements and parameter
estimation; and, iv) solution procedure. Section 9 provides a summary of the models reviewed.
This includes a discusson of the magor strengths and wesknesses of each modd from the
perspective of: i) basic theory; ii) mathematica eegance; iii) computationa performance; and,
iv) data and parameter estimation. Although the research frontier is not the focus of this report,
Section 9 dso provides some comments on continued research and development needs that can
fecilitate the more widespread usage of these models. Section 10 provides some brief
concluding comments.
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7. BASIC THEORY

7.1 Transportation Systems as M ar kets

The basic idea underlying the network equilibrium approach to travel demand modding is a
view of trangportation systems as markets. The network equilibrium approach embeds the
eements typicdly found in the traditiond, four-step gpproach into a market equilibrium
framework. As in classca economic market theory, the task is to predict the short-run
equilibrium levels of supply and demand, that is, the number of trips and leve of trangportation
sarvice in the study area (Fernandez and Friesz 1983).

While the concept of market equilibrium is draightforward, its application to
trangportation systems involves special consderations related to two features of these systems:
i) the network basis of trangportation systems, and, ii) the existence of demand externdities in
the form of congestion. In the first case, supply functions are tied to network links; for
example, consder the performance functions typicaly used to reate flow in alink to its trave
time or cost (see below). However, the relevant unit of andysisistheindividud trip between an
origin and a destination; this trip will use a path conggting of multiple network links. Therefore,
the equilibrium modd must relate each trangportation demand (i.e, trip) to multiple supply
components. In the second case, each traveler’s choice relates to the leve of service provided
by avalable paths between an O-D pair. In turn, these service leves are influenced by the
choices of other travelers since the performance of service typicdly degrades as the number of
usersincrease. These congestion externdities suggest that the level of service (supply) and flow
(demand) between an origin-destination pair mugt, in general, consider the service levels and
flowsfor al origin-destination pairsin the network (Fernandez and Friesz 1983).

Trangportation market equilibrium occus a two leves. Firg, the flows through the
network correspond to some stated equilibrium criterion such as Wardrop's user-optimal
principle (informdly, no user can improve hisher cost by unilaeraly changing routes, see
below). This pattern corresponds to the NA phase of the traditional four step approach. The
second equilibrium level corresponds to the TG, TD and MS components of the four step
approach. Demand for these “higher-level” componentsis elastic, meaning thet it is reponsve
to cost. Therefore, we can dso specify a corresponding market equilibrium criterion at this
leve, eg., no usr can improve hisher trave cost by unilaterally changing generdtion rate,
degtination choice or mode choice. Note that these are tightly linked with the “lower leve”
network equilibrium since network flow cogts affect the higher level demands while the higher
level demands affect the amount of network congestion and therefore the network travel codts.

7.2 Basc Components

7.2.1 Network Characteristics

A directed graph represents the transportation system in the study area. The directed graph
congsts of a st of network nodes and a set of directed (i.e, “one-way”) arcs connecting
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certain nodes ( 12-1). Some nodes represent travel origins ( 12-2) while others represent travel
degtinations ( 12-3); the remaining generdly correspond to street intersections, modd transfer
points and other flow “transfer” locations. A two node sequence represents each network arc
in the standard “from-node, to-node’ format ( 12-4).

Sequences of network arcs comprise network paths. These paths originate at origin
nodes, terminate at destination nodes and are connected in the sense that the “to- node’ of an
ac is the “from-node’ of the next arc in the sequence ( 12-5). An arc-path incidence
variable indicates the relaionship between individua arcs and paths ( 12-9): modds use this
variable directly to maintain consstent rel ationships between flows at the arc and path levels.

Travel demand models differ with repect to representation of multiple modes. Often, a
mode will use a sngle directed graph to represent al modd networks in a sudy area. In this
case, different modd flows coexist within the same arc ( 12-10) or within the same path ( 12-
15). In other cases, an explicit multimodal network is required, that is, each mode has a
separate directed graph. “Trandfer arcs’ link these distinct moda networks.

Travel demand models estimate flows at ether the arc or path level. Flow feasibility
requirements ensure that solutions are redlitic, consistent between the arc and path levels, and
congstent with aggregate-levd travel demands (that is, the known or estimated aggregate flows
between O-D pairs). Theserequirementsare: i) al path flows are non-negative ( 12-56); ii) the
mode-specific flows on dl paths between an O-D par sum to the aggregate modd flows
between that pair ( 12-57); and, iii) the mode-specific flows on al paths that use an arc sum to
the total moda flow on that arc ( 12-58).

Although travel demand models require consistency between flows at the arc and path
levd, an interesting theoretica result is that at equilibrium only arc flows and aggregeate trave
demands are unique: path flows are not unique (see Fernandez and Friesz 1983; Sheffi 1985,
66-69). That is, any sat of path flows that are conagent with the equilibrium arc flows is
dlowable; in theory, this is an infinite sst.  From a practica perspective, this is not a mgor
problem snce we are primarily concerned with flow levels within given dements of the
transportation infrastructure. However, one must keep in mind that path flow estimates from
these models are not suitable for anayss.

7.2.2 Cost Functions

Similar to network flows, travel costs can be measured at the arc ( 12-13) or path levels.
However, cogt functions are usudly specified at the arc leve: path travel cogts are smply the
summed cogtsfor dl arcsthat comprise that path ( 12-17).

Mode-specific arc travel costs are generdly afunction of flow, ether the mode-specific
flow on that arc ( 12-59) or a function of al modd flows across dl arcs in the network ( 12-
60). Theformer cost function isreferred to as separable, i.e., the flows across different modes
and different arcs can be meaningfully separated. The latter cost function is referred to as non-
separable, i.e, flows across different modes and different arcs cannot be partitioned
meaningfully into independent flows. Separable cogt functions are not as redidic as non-
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separable functions. For example, a separable cost function assumes that different modes
sharing an arc do not influence each other (e.g., automobile congestion on a link does not
influence buses using the same link). Also, separable cost functions do not account for the
interactions of flows on different arcs (e.g., congestion at intersections due to crosstraffic,
interactions among two-way flows on a street). Non-separable cost functions can consider
these interactions, however, solving the resulting travel demand modd is much more difficult.

Typicdly, arc flow costs functions represent the generalized cost of travel within that
element of the trangportation infrastructure. For separable cost functions, a basic but typicaly
invoked functionis:

ck(fX) =dk +w s(f)) (7-1)

where d) is the out-of-pocket expense required for using mode k on arc a (this may aso be a
function of flow), s';( fa") is the mode k travel time on arc a associated with flow levd £, the

mode k flow on arc a, and w is a value-of-time (VOT) parameter that trandates travel time
into equivaent monetary units, i.e, travelers time cost. One of the two dements of ( 7-1) may
not be present for a given mode within a given arc. For example, public trangt fares may only
be invoked in modd entry or transfer arcs. The VOT parameter may aso be associated with
the monetary expense variable instead of the travel time variable, if desired.

Various modds require different redtrictions on the behavior of cost functions with
respect to flow levels. Given the basic format in ( 7-1), these redtrictions are through the flow-

based travel time function s';( fa"). A typicdly invoked format for this function is (Brangton
1976):

(o) B ko0 (7-2)
Sa(fa)_saéhblgs:g 5

where 5¥is the freeflow travel time, Bis the mode k capacity of arc a, and by ,b, are
empiricaly-estimated parameters.

7.2.3 Demand Functions

Demand functions relate the amount of O-D flow for each mode to travel costs. Aswith the arc
cost functions, demand functions are either separable or non-separable.  Separable demand
functions relate the level of mode-specific flow between an O-D pair to the minimum cost for
that mode and O-D pair only ( 12-61). In contrast, non-separable demand functions relate the
mode-specific flow between an O-D pair to the minimum travel costs across dl O-D pairs and
modes ( 12-62). Aswith arc cogt functions, non-separable demand functions are more redigtic
but result in model formulations that are more difficult to solve,
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In some models, the O-D demands are fixed and exogenous, meaning that aggregate
O-D flows are required as externd data rather than predicted as a modd outcome. Evans
(1976) provides an example of an endogenous, separable demand function:

D, =A B exp(-g; C;.) (7-3)

where D;; is the aggregate flow between origin i and destination j, Cij« isthe minimum travel cost
between the O-D pair, g is an estimated parameter, and A and By are “baancing factors’ or
parameters chosen so that outflows from origins and inflows to destinations sum to totals known
from exogenous data (i.e., the total amount of travelers leaving each origin and the tota amount
of travelers entering each destination). This demand function is essentidly a doubly constrained
goatid interaction modd, tha is, a spatid interaction models whose origin outflows and
dedtination inflows are condrained to match known sums (see Fotheringham and O'Kély
1989; Wilson 1967, 1974).

7.3 Typesof Transportation Equilibria

7.3.1 Network equilibria
7.3.1.1 User optimal (UO)

7.3.1.1.1 User optimal-gtrict (UO-S)

The most common type of network equilibria analyzed isthe user optimal (UO), origindly due
the Wardrop (1952). The traditiond, dtrict definition, referred hereafter as user optimal-strict
(UO-9),is:

(UO-S) At network equilibrium, no traveler can reduce his or her travel costs
by unilateraly changing routes (i.e,, independently change routes without other
users route changes).

Alternatively: All used routes between an O-D pair have the same, minimal cost
and no unused route has a lower cost.

This implies the following network flow characteridics.  Firdt, podtive flow for a mode on a
route implies that it must have atravel cost equd to the minimum cost for that mode between the
particular O-D ( 13-1). Second, any route with a cost grester than the minimum for a mode
implies that the flow leve for that mode is zero on that route ( 13-2). In other words, for each
mode, flow only occurs on the minimum cost routes between each O-D pair, i.e, no traveler
has aless codtly dternative route (Smith 1979).

The UO-S conditions imply a tenable behaviord motivation but require srong
assumptions about travelers reactions to conditions within the network. The fundamenta
behaviord podtulate is that travelers follow the “cheapest” available route for their user class.
While this basic motivation seems reasonable, strict adherence to this behavior a an individud-
level isless tenable. The UO-S conditions imply travelers perfect decison-making capabilities
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and perfect knowledge about network conditions. In other words, travelers know the exact
cost on each available route and react to these costs with perfect accuracy. Nevertheess, many
equilibrium modds follow the UO-S conditions since they result in tractable formulations and
provide a“best-guess’ about traveler decisions lacking other behaviora data.

7.3.1.1.2 UO-Genera (UO-G)

Smith (1979) proposed a generdization of the UO conditions that imply less strict behaviord
assumptions. Pargphrasing dightly, the user equilibrium-general (UO-G) conditions are:

(UO-G) Traveers change routes in the next time period in a manner that
reduces total cost based on the current route costs

Travelers change routes in the next time period (e.g., “tomorrow”) based on the current time
period’s costs (eg., “today”). Therefore, travelers do not react to network conditions
ingantaneoudy. Also, the current time period flow pattern influences, but does not determine,
the flow pattern in the next time period. In generd, a number of flow patterns rather than a
sngle flow peattern in the next period will satisfy UO-G (Fernandez and Friesz 1983; Smith
1979).

Despite the tempord dement in the definition, this principle can dso characterize datic

flow patterns since it describes conditions for flow gtability. The UO-G conditions state that a
flow pattern is UO if any other flow pattern would result in higher totd cogts ( 13-3). This
expands the UO-S conditions. If the network is at UO-S, the flow pattern will be stable since
no traveler can switch routes in the next time period and reduce total cost. However, UO-G
aso dlows flow patterns that do not satisfy UO-S but nevertheess are reasonable from a
behaviord perspective. Under UO-G, individud travelers switch to more expensive routes only
if that change does not lead to an increase in total cost across dl travelers. Thus, some travelers
are dlowed to make “mistakes’ if this does not “harm” other travelersin toto.

7.3.1.2 Dynamic User Optimal (DUO)

Static equilibria assume that the travel demand pattern in a given study area converge to a
“deady-date’ condition in which tempora fluctuations do not occur. Analysts recognize that
temporad fluctuationsin NA, MS, TD and TG do occur in redity. Since transportation planning
is oriented traditiondly towards infrastructure planning and broad policy evauation, ignoring
minor tempord fluctuations is defensible since these plans and palicies attempt to accommodate
the generd travel demand pattern.

There have been recent attempts to incorporate dynamic properties of travel demand
patterns. These atempts are motivated by the U.S. federd policy shifts away from large
infrastructure investments in urban area. Manifestations of this policy shift such as intelligent
transportation systems (ITS) require detaled tempora predictions of traffic flows and
congestion and the implementation of non-transportation, activity-based solutions such as flex-
time and tdlecommuting. Another motivation for dynamic travel demand models is the difficulty
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in capturing adequatdly the environmental impacts of travel demand paiterns in generd and
traffic congestion specificdly. Assessing the impacts of traffic on ambient air quality requires
estimates of behaviors such as engine cold-garts and speed variaions. These factors affect air
quality more than aggregate throughput per se (Kulkarni et al. 1996).

“Equilibrium” is a much broader concept in the dynamic redm. A fundamenta
condderation is the equilibriun’ stime frame. Time can be viewed as discrete (i.e, divided into
finiteintervas) or continuous. In addition, equilibrium conditions can be stated for “within-day”
or intra-periodic, “day-to-day” or inter-periodic or combined intra/inter-periodic dynamics.
Within-day dynamics capture daily fluctuations in travel demand both with respect to inherent
fluctuations as well as unplanned disturbances such as road closings, accidents, etc. Within-day
dynamics dso dlows modding timing decisons for trip generation; this is important for
discretionary travel as well as flex-time-based commuting in congested networks. Day-to-day
dynamics capture the dower learning process of travelers as they acquire information about the
travel environment. In addition, the existence of a traditiond transportation equilibrium is not
guaranteed, particularly with respect to continuous time dynamics. The system may converge to
different attractors and display complex behavior as with dynamicd systems in generd
(Cantrella and Cascetta 1995).

As the discussion in the previous paragraph implies, there is a wide-range of dynamic
equilibrium formulations (eg., Cantrela and Cascetta 1995; Friesz et al. 1994; Friesz,
Berngtein and Stough 1996; Ran and Boyce 1994; Ran, Hall and Boyce 1996). Severd of the
continuous time formulations have smilar sructure to the UO-G  conditions (more specificaly,
they share the structure of a variational inequality problem; see Nagurney 1993). Many are
oriented specificdly towards ITS rather than travel demand prediction. For example, the
formulations of Ran and Boyce (1994) and Ran, Hal and Boyce (1996) assume that the
amount of flow entering each transportation link are control varigbles in their dynamica system.
Red-world manifetations of these variables could be traffic control and ITS devices such as
vaiable message sgns, vaiable time traffic lights and information provided to drivers that
influence or direct their route choices.

Due to the orientation of this review towards pragmatic travel demand modds, the
dynamic user optima (DUO) principle consdered here is a discrete-time, within-day
formulation by Janson (1991a, 1991b). This DUO formulation has resulted in a very practica
dynamic NA mode and solution procedure (to be discussed later). ThisDUO principleis:

(DUO) At network equilibrium, no traveler who departed during the same
time interval can reduce hisor her travel cogts by unilaterdly changing routes.

Alternatively: All used routes between an O-D pair have the same, minima cost
and no unused route has a lower cost for travelers that departed during the
sametimeinterval.

This DUO principle implies the following network flow characterigtics. Firdt, postive flow on a
route for users who departed during a given time interva implies that it must have a travel cost
equa to the minimum cost for those users between the particular O-D pair ( 13-4). Second,
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any route with a cost grester than the minimum for users who departed during a given time
interva impliesthat the flow leve for those usersis zero ( 13-5). Note that these conditions are
a direct extenson of the UO-S conditions. Indeed, UO-S is a specid case of this DUO
principle (Janson 1991).

DUO implies the same harsh behaviord assumptions as UO-S. In addition, the
trestment of time as discrete limits the resolution of these dynamics. However, the introduction
of a dynamic component increases the redism and usefulness of the UO equilibrium principle.
Also, as dated above, this equilibrium principle does dlow for a pragmatic dynamic NA model
that is tractable computationally and has reasonable data requirements.

7.3.1.3 System Optimal (SO)

While the UO conditions minimize individua travel codts, it does not in generd minimize total
cog for travelers as awhole. The UO-S conditions only require that the flow pattern minimizes
costson an individud basis. The UO-G conditions dlow flow changes that do not increase total
cod but do not require this to be minimad for individuads. Minimizing individud costs does not
equate to minimizing total costs when congestion is present in the network. Under these
conditions, each traveler’ s route choice influences the costs of other travelers.

The UO-S principle assumes that travelers do not condder the externdities of ther
decisons. travelers only perceive their persond travel cost and not the additiona costs imposed
on others by ther route choices (Ortuzar and Willumsen 1990). To accommodate this
additionad decison principle, Wardrop (1952) formulated a second, system optimal (SO)
principle

(SO) At network equilibrium, the total (or average) travel cost is minimum.

A flow pattern that satisfies this principd is appeding from a society-wide perspective. An SO
flow minimizes the total operating cost of the network, implying efficiency (Fernandez and Friesz
1983). Also, if we accept tota cost as a surrogate for the system-wide use of energy resources
and output of pollution, we can see that this pattern would minimize these negative impacts.
However, this flow pattern is not likely to occur in practice since it requires travelers to make
joint decisons to minimize total codt rather than their individua cost. At SO, it will be likely that
travelers can unilaterally change routes to reduce their individua costs, meaning that the pattern
will be difficult to sustain without some externd control mechanism (Fernandez and Friesz 1983;
Sheffi 1985).

The difference between UO-S and SO is clear when one considers the type of
information required for travelers to achieve each pattern. UO-S postulates that travelers
consder the average cost on routes: travelers choose the route between an O-D pair that has
the minimum average cost for ther user cdass ( 13-1), ( 13-2). In order to obtain the SO
pettern, travelers only consider the marginal costsfor routes, that is, the added cost of their
entry into aroute. The SO conditions imply that, a equilibrium, flow only occurs dong routes
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whose margind cog for the mode is minimum for that O-D par ( 13-6), ( 13-7). Thus,
traveerswill only choose routes that minimize their impact on tota travel cost.

SO-based modd formulations have two valuable features. First, SO flow patterns
provide a vauable benchmark for assessng the efficiency of other flow patterns (Sheffi 1985).
In addition, while the SO principle has traditiondly been viewed as an unredidtic ided, the
increasing popularity and sophigtication of congestion pricing policies and ITS in genera can
make these conditions an obtainable god for red-world settings.

7.3.1.4 Stochagtic user optimal (SUO)

The stochastic user optimal (SUO) is ardaxation of a grict behaviord assumption implied by
UQO. In particular, SUO assumes cost minimization but allows cost perceptions to vary among
travelers. The SUO principleis (Daganzo and Sheffi 1977):

(SUO) At network equilibrium, no traveler can reduce his or her perceived
travel cods by unilaterdly changing routes.

Alternatively: no traveler believes he or she can reduce costs by unilateraly
changing routes.

The SUO principle assumes that the route travel cogts include random components that reflect
vaidions in traveers perceptions. Randomness results from factors such as limited
information, decision making inaccuracies or non-measured route attributes (Daganzo and Sheffi
1977). Although random variables, travel costs are related in a systematic and rational manner
to the actual travel cods, specificdly, the random travel costs result from an “error” distribution
around the actud route cost. The eror has an expected value of zero, meaning tha the
expected vaue of the random route cost is equd to the actua cost ( 13-10),( 13-11). Thus, we
expect perceived route costs overdl to be accurate but alow for variations in accuracy across
travelers

The SUO conditions require a dispersed dlocation of the flow between an O-D pair
according to the probability that each route is chegpest for travelers ( 13-8), ( 13-9). Different
assumed probability distributions for the error component result in different andytical modds for
cdculaing the route choice probabilities (eg., Sheffi and Powel 1981, 1982). However, at
equilibrium the actual route codts for used routes will not be equal and minimd as in the UO
case (Sheffi 1985). In generd, under SUO each route between an O-D pair will have a non-
zero flow leve, dthough it may be smdl in some cases.

Although SUO has aredigtic behaviord foundation, it is not as widdy used as the UO
principle in model formulations.  This is due to the route enumeration problem. Caculating
route choice probabilities generdly requires specifying each possible route between an O-D
pair: this set can be extremdy large. SUO can be solved by identifying a subnetwork of likely
routes rather than using al possible routes between an O-D pair, athough this introduces some
eror (eg., Damberg, Lundgren and Patriksson 1996; Did 1971). In addition, the inherent
nature of the stochadtic flow pattern makes it difficult to search for an optima solution to the
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modd (Sheffi 1985). Findly, under highly congested conditions the SUO pattern closdy
resembles the UO-S pattern.  As the network becomes congested, the equilibrium effects
become stronger than the route dispersion effects due to the stochastic route choice component
and the SUO solution begins to resemble the UO solution (see Sheffi 1985, 336-338 for aclear
and intuitive demondration). Neverthdess, recent breskthroughs in SUO techniques are
making this theoretically appeding approach more viable from a practical perspective (eg.,
Leurent 1995). Some of these techniques will be discussed below.

7.3.2 Market equilibrium and the shortcomings of the four-step approach

The “higher-levd” demand patterns for TG, TD and MS ae linked very tightly to the
equilibrium pattern at the network-level. This results from these demands being dadtic (that is,
responsive) to the network flow costs. For example, the flow generated from origins can be
influenced by travel cogts since travelers may postpone or subgtitute other activities (eg.,
telecommuting or teleshopping) when cogts are high. Similarly, the amount of flow attracted to a
dedtination can affect its attractiveness, i.e, greaster congestion makes a dedtination less
attractive to travelers. The amount of flow on the street network will decresse if travel costs are
high and travelers switch to other modes In turn, postponing trips and switching to other
destinations or modes reduces the network flow levels and therefore can lower travel costs.

At market equilibrium, the travel paitern should exhibit gability that simultaneously
encompasses dl four of the travel demand components. For example, a a UO-type market
equilibrium, no traveler should be able to unilaterally change his or her trip propensty (TG),
degtination choice (TD), moda choice (MS) nor route choice (NA) without incurring higher
cods. As noted above, snce these components are tightly linked it is impossble to solve for
each component in isolation without consdering its effects on the other components.  (Note,
however, that empirical measurement of linkages between daily trip generation rates and other
travel demands has proven to be problematica ; see Southworth 1995).

The tight interconnections among the different travel demand components are clear
when examining the forma conditions for market equilibrium given a UO-S network equilibrium.
Aswith aUO-S network equilibrium, we identify the minimum travel cost between an O-D pair
for each mode ( 13-13) and only dlow pogtive flow levels on routes that exhibit that minima
cost ( 13-12). We a0 require the summed route flows for each user class between an O-D
pair to equd the totd travel demand for that O-D pair ( 13-14). Smilarly, route costs are dso
required to be the sum of the costs for the arcs that comprise each route ( 13-15). Fndly, dl
route flows and minimum costs must be non-negative ( 13-16). However, unlike the UO-S
conditions, the O-D travel demands are no longer fixed and exogenous but dependent on the
minimum route costs between the O-D pair. The summed route flows between an O-D for a
mode now must equal an aggregate travel demand level determined by the travel costs between
that pair ( 13-14). Since these cogts in turn depend on route flows, we have a* Gordian Knot”
of intertwined influences that must be met smultaneoudy.
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The functiond dependencies among the different travel demand components in the
market equilibrium conditions requires any travel demand modd to link in a theoretically
consistent manner the different travel demands, their influences on travel costs and the
influence of these cogts on demands. Without these explicit linkages, the modd does not meet
the market equilibrium requirements and is consequently misspecified (Aashtiani and Magnanti
1981; Fernandez and Friesz 1983). The traditional, four-step approach violates these market
equilibrium conditions (or, more correctly, does not guarantee these conditions) since it does
not contain theoreticaly consgtent links among the components nor an explicit mechanism for
satisfying the equilibrium conditions smultaneoudy across dl components.  In contrad,
convergence is the very essence of the equilibrium approach and is centra to the solutions
generated by these models (Boyce, Zhang and Lupa 1994).

Severd studies have demondtrated the weakness of the four-step approach. As far
back as the mid-seventies, Florian, Nguyen and Ferland (1975) determined that sequential
estimation with feedback loops of TDZNA does not converge to a consistent solution. More
recently, astudy by COM SIS Corporation (COM SIS 1996) compared the four-step approach
without feedback to the same approach with severa different feedback mechanisms and a
theoretically-congstent network-equilibrium approach, specificaly, the Evans (1976) dgorithm
(referred to as the “method of optima weighting” in the report). The “direct (feedback)
method” did not consstently converge to an equilibrium solution. Feedback mechanisms based
on the method of successive averages (MSA) compared favorably with Evans (1976) model
with respect to convergence results, athough the study recognizes that the MSA-based
gpproach may not perform as well in large networks with high levels of congestion.

An extendgve andyss by Boyce, Zhang and Lupa (1994) compared the four-step
procedure, with and without feedback loops, with the Evans (1976) modd. Specificdly, the
methods compared: i) one iteration through the TDZM SZNA with an “dl-or-nothing” (AON)
network assgnment; ii) multiple iterations through TDZMSZNA with AON assgnment; iii)
multiple iterations through TDEMSZNA with AON assgnment and MSA applied a each
iteration; iv) multiple iterations through TDZM SZNA with UO-S assgnment and MSA; and, v)
the Evans (1976) dgorithm. In many respects, the COMSIS (1996) report is Similar to this
study, athough Boyce, Zhang and Lupa (1994) conclusions are more negetive with respect to
the four-step/feedback dternatives to the network equilibrium-based approach. The Evans
(1976) adgorithm was superior in reproducing known data, particularly key variables such as
automobile link flows and totd automobile trips, with only modest increases in computationa
effort compared with the four-step/feedback loop aternatives.

Boyce, Zhang and Lupa (1994) conclude their research paper with severd
recommendations that are relevant to the objectives of this current report. These
recommendations are;
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i) Progress in improving travel forecasts will not result from solving the four-
step approach with feedback. Rather, progress will be achieved when
professond practitioners begin to understand the requirements of the
desired equilibrium solutions;

i) Prectitioners should indst that software vendors correctly implement
methods for achieving equilibrium solutions;

iif) Federa agencies such as FHWA should conduct short courses to introduce
practitioners to equilibrium-based gpproaches,

iv) Universty ingtructors and textbook authors should update their courses and
indructiona materia to produce a new generdion of professonads who
understand the principles of equilibrium travel models.

This research report attempts to meet some of the Boyce, Zhang and Lupa (1994)
recommendations by providing an accessible review of trangportation equilibrium theory and
practicadl models within that theory. The next section of this report reviews some practical
equilibrium-based travel demand models.
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8. EQUILIBRIUM TRAVEL DEMAND MODELS

8.1 Overview

This section of the report provides an overview of sedlected models that determine market
equilibrium travel demands for a sudy area The discusson classfies models according to the
network equilibrium assumed. Note that the previous section only identified the theoretical
conditions for network and market equilibrium. This section discusses practical modds whose
solutions correspond to the theoretical conditions discussed previoudy. Table 8-1 provides an
overview of equilibrium travel demand modds reviewed in this section.

Travel demand components
Network NA NA/MS NA/MS/TD NA/MSTD/TG
equilibrium class
uo-S Sheffi (1985) Evans (1976) Florian and | STEM (Safwat and

Nguyen (1978) Magnanti 1988)

uo-G T2 (Did 1995b) Dafermos (1980) Dafermos (1982)
DUO Janson (19914,

1991b)
SUO Fisk (1980) Super- and hyper-networks (Sheffi and Daganzo 1980)
UO-SSUO Trip consumer approach (Oppenheim 1995)

Table 8-1: Overview of equilibrium travel demand models

The travel demand modes discussed beow generdly follow the equivalent
optimization approach first pioneered by Beckmann (Beckmann, McGuire and Wingten
1956). It isimpossble to overgtate the impact and importance of this initia work: Beckmann
and colleagues angle-handedly launched the entire field of network equilibrium-based travel
demand modding. All subsequent work in the static and dynamic equilibrium reams can trace
thelr originsto this research.

The basic equivdent optimization drategy is to first specify a combined travel demand
modd, i.e, the combined NA/MSTD/TG components. Then, an equivaent optimization
problem is formed such that its solution corresponds to a market equilibrium of the combined
travel demand components dated in the initid modd. Typicdly, this problem contains a
objective function to be minimized and condraints that represent flow and aggregate demand
feasbility requirements. The objective function typicdly corresponds to some type of cost
function, meaning that the resulting market equilibrium is the minima cost travel pattern subject
to the assumed equilibrium conditions.
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In order for the equivdent optimization problem to correspond to a travel demand
market equilibrium, we must be assured that its solution is unique and equivalent to the desired
theoretica equilibrium conditions. Equivdency can be assured by comparing the “first-order”
(first derivative) conditions for optimato the theoretica conditions for equilibrium. Discussion of
these conditions is beyond the scope of thisreport. Sheffi (1985) provides a basic discussion of
these conditions. Boyce (1984) and Boyce, LeBlanc and Chon (1988) review equivalency
conditions with respect to particular travel demand models.

Solution uniqueness can be assured if the objective function to be minimized is convex.
This condition can be visudized roughly by imagining a“u-shape’ in two-dimensons or “bowl-
shape’ in three dimensons. The required shape is andogous for solution spaces in higher
dimensons (where the number of dimensonsis equd to the number of varigbles), athough more
difficult to visudize. For a more rigorous definition of convexity, see Varian (1992). To ensure
convexity of the objective function, we must impose condraints on the travel demand
components, particularly with respect to the arc flow cost functions and the demand functions.
The discusson below will identify the assumptions required for each modd.

In the interest of brevity and due to the pragmatic orientation of this report, this section
only discusses the equivdent optimization problems. The travd demand components
corresponding to these optimization problems are not discussed directly.  This does not limit
greatly the understanding of the models and their requirements from a practica perspective: data
inputs, parameter estimation and solution procedures can il be readily identified.

8.2 Moded Descriptions

8.2.1 UO-S-based approaches
8.2.1.1 NA (Sheffi 1985)

8.2.1.1.1 Assumptions

i) onemode (athough multi-moda extensons are possible);
i) separable cost functions ( 12-59);

i) non-negetive cost functions ( 12-63);

IvV) increasing cod functions ( 12-64);

v) O-D flows are fixed and exogenous.
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8.2.1.1.2 Modd structure

The basc UO-S NA equivaent optimization problem is origindly due to Beckmann, athough
the excdlent and unfortunately out-of-print text by Sheffi (1985) provides a very clear and
accessble statement. UO-S NA optimization problem has a straightforward structure, although
Sheffi (1985) argues that the objective function does not have an intuitive economic or
behaviord interpretation. The objective function conssts of a sngle component: the summed
cumulative cogts of each arc cogt function in the network given its current flow ( 14-1).
Minimizing the sum of these flow costs across dl arcs corresponds to the theoretica conditions
that each traveler is on a path that istied for the minimum cost between the O-D pair.

The decison variables in the optimization problem are the flow levels on each arc; the
objective is to choose these flows o0 that the objective function is minimized. The arc flow
levels are subject to the following congraints: i) the total flow on arc must equd to the summed
flow for dl paths that use that arc ( 14-2); ii) the flow on dl routes between an O-D pair must
sum to the aggregeate travel demand for that par ( 14-3); and, iii) al path flows must be non-
negative ( 14-4). While the objective function is Sated in terms of arc flows, the condraints are
gated in terms of path flows. These are related to each other through an arc-path incidence
vaiadle ( 12-9).

The objective function of the UO-S NA optimization problem is convex and therefore
has a sngle minimum point. Convexity is ensured by the assumptions of separable, non-
negative and increasing arc cost functions. While the non-negativity and increasing assumptions
are reasonable, the separable cost function assumption is restrictive as noted above.

8.2.1.1.3 Datarequirementsand parameter estimation

The data required for solving the UO-S NA are: i) a transportation network and O-D zonation
system for the study areg; ii) the aggregate flows between each O-D pair (this dso implies that
the total outflow from origins and the total inflows to destinations are known); iii) arc flow cost
functions that meet the constraints specified above (eg., ( 7-1), ( 7-2) ); and, iv) the estimated
parameters for the arc flow cogt functions. Of these data/parameter requirements, only iv)
presents mgjor difficulties.

Edtimating the VOT parameter in equation ( 7-1) is necessary if monetary expenses are
relevant (eg., tolls on certain links). This requires some type of experiment or survey in which
travelers make choices among different combinations of travel times and monetary codts.
Edimating the parameters of an arc performance function such as ( 7-2) can be expensive and
time-consuming. Branston (1976) and Chp. 13 of Sheffi (1985) provide a discusson of
measurement and estimation issues. More recently, Fisk (1991) extended a probabilistic traffic
flow to provide link travel time/flow relationships appropriate for NA. The model parameters
relate to the mean and variance of free flow time. This alows parameter estimation without the
need for extensve flow/travel time observations as described in Branston (1976) and Sheffi
(1985).
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There is a rong underlying beief in the literature that the UO-S equilibrium conditions
arethe “naturd” stable flow patterns that occur in rea-world settings. Therefore, a greet ded of
atention has been directed towards the UO-S NA procedure and its use in broader travel
demand models. However, as Fernandez and Friesz (1983) note, there have been few
attempts to vaidate the UO-S NA procedure with empirica evidence. Forian and Nguyen
(1976) provide one of the few empirica vdidations. Usng empiricd data from Winnipeg, they
found generaly good correspondence between the UO-S NA predicted flows and observed
flows. However, they note that the procedure tended to overpredict arc and route travel times.
They dso comment on the sengtivity of the results to the arc performance function parameters
and the network detalls (i.e., the level of network aggregation).

8.2.1.1.4 Solution procedure

Severd heurigtic solution methods have been formulated and gpplied to the UO-S NA problem.
These indude the capacity restraint method and the incremental assignment method.
Capacity redtraint requires a sequence of dl-or-nothing assgnments (i.e, dl flow between an
O-D pair is assgned to the shortest path between that pair) in which the previous assgnment’s
travel codts are used for the current iteration. A problem with this approach is that the dgorithm
can get trapped in “cycles’ where flow changes “bounce’” back and forth for a subset of the
network while other subsets are ignored. A “smoothing” procedure which combines the last
two iteration’s travel cods in a weighted average amedliorates this problem. However, neither
version of the capacity restraint method converge to the desired UO-S conditions (Sheffi 1985).
The incrementd assgnment method divides the O-D flow matrix into portions and performs an
al-or-nothing assgnment for each portion. After each flow portion loads on the network, the
travel costs are updated and the next portion loads based on these updated costs. However,
this heurigtic does not converge to the desired UO-S equilibrium conditions (Sheffi 1985).

A method that generates a network flow pattern congstent with the UO-S equilibrium
conditions is the convex combinations method (also known as the Frank-Wolfe algorithm).
This procedure is a “feasible direction method.” The dgorithm starts with some feasible solution
(dthough not an equilibrium solution, i.e, a solution that only sdisfies the flow and non-
negdivity condraints). At each iterdion, the agorithm determines the direction and step-
length or move size within the solution space that best “improves’ (i.e., reduces the current
vaue) of the UO-S NA objective function. This continues until the solution can no longer be
improved (Sheffi 1985). Figure 8-1 illudrates this method.

The direction-finding step of the convex combinations method involves linearizing or
determining a linear gpproximation of the objective function a the current solution. This occurs
by computing an auxiliary solution, i.e., an “dternative solution” based on the current solution.
The two solutions form a line that determine which direction to move, i.e., which network flows
and travel demands should be adjusted. However, snce this line is only an gpproximation
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typicaly we do not want to move dl the way to the auxiliary solution. Instead, we refer back to
the origina objective function and determine the optimal step size. This requires solving for the
move-gze that minimizes the objective function in that direction. Since thisis asngle parameter,
we can easly solve for this vaue usng a one-dimensiond search dgorithm. See Sheffi (1985,
Chp. 4) for an excellent discussion of this strategy.

Figure 8-1. Convex combinations method (after Sheffi 1985)
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The mgor computationd effort in the convex combination method is computing the
auxiliary solution. The auxiliary solution is an dl-or-nothing assgnment of O-D flow on the
shortest path between the O-D pair based on the current flow levels (which are considered
fixed during the given iteration). Therefore the agorithm must solve the sat of shortest peths
from each origin to al degtinations during esch iteration.

A problem with the convex combinatiions method is its dow convergence. As the
agorithm nears optimum the step Sizes decrease. Some improvements have been suggested for
Speeding-up convergence, dthough they do not seem to be widdy implemented (Ortdzar and
Willimsen 1990). Recently, Jayakrishnan et al. (1994) proposed a more efficient gradient
projection algorithm for the UO-S NA problem. Its basic structure is very smilar to convex
combinations: the dgorithm congts of a direction-finding and move-size steps. In contrast with
convex combinations, the direction-finding step uses a non-linear gpproximation of the objective
function in the neighborhood of the current solution. This speeds convergence as the agorithm
gpproaches the optimum.

The convex combinations methods is not limited to UO-S NA: this adgorithm can be
goplied widdy to network equilibrium-based travel demand modes.  Adapting convex
combinations to other formulations generaly requires modification of the direction-finding step.
These modifications will be discussed below.

8.2.1.2 NA/TD (Evans 1976)

8.2.1.2.1 Assumptions

i) onemode,

i) separable cost functions ( 12-59);

i) non-negetive cogt functions ( 12-63);

Iv) increasing cogt functions ( 12-64);

v) totd outflows from origins and totd inflows to destinations fixed and exogenous,

vi) TD component is a separable demand function in the form of a spatid interaction
(“gravity”) type function with an exponentid cost function ( 14-5);
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8.2.1.2.2 Modd structure

The Evans (1976) TD/NA modd extends the UO-S NA mode to include a TD component.
O-D flows ae influenced by the minimum route cost between each par through a spatid
interaction or “ gravity”-type TD component. This TD component is not explicit in the equivadent
optimization problem but rather isimplied by the optimdity conditions for that problem. Evans
(1976) main contribution was to combine foundationad work by Wilson (1967, 1974) on
“entropy-maximizing,” doubly congrained spatid interaction modds within the UO-S-based
NA optimization problem developed by Beckmann, McGuire and Wingten (1956). The joint
optimization problem combines in a consstent manner the flow-related costs associated with the
network equilibrium, a TD based on the route costs and the TD' s influence on the network flow
levels

Evans (1976) NA/TD modd equilibrium requires solving a condrained minimization
problem similar to the UO-S-based NA problem. The objective function ( 14-6) consists of
two components: i) a arc-flow cost component equivaent to the NA objective function; and, ii)
an entropy term that corresponds to the trip distribution modd. The decison variables to be
solved when minimizing this function are the flow levels on each arc and the aggregete flows
between each O-D pair.

The TD term of the objective function alocates flows according to entropy-maximizing
principles. In brief, this requires the flow pattern to be the most likely or highest probability
pattern consstent with known aggregate information about the system (see Fotheringham and
O Kdly 1989; Webber 1977). In this case, the known information include: i) total outflows
from each origin; ii) totd inflows to each dedtination; and, iii) the minimum travel costs between
each O-D par. The flow varidble vaues that minimize the TD component of the objective
function generate the mogt likely TD pattern given this information.

Condraints on the Evans (1976) minimization program generdly correspond to
gandard flow totding and non-negativity conditions. These include i) flows on dl routes
between an O-D pair must sum to the totd flow between that pair ( 14-7); ii) flows on al routes
that use an arc must sum to the totd flow on that arc ( 14-8); iii) the flows entering each
degtination from dl origins must sum to the known tota inflows to that destination ( 14-9); iv)
outflows from each origin to dl destination must sum to the known outflows from that origin (
14-10); v) dl path flows and aggregate O-D flows must be non-negative ( 14-11), ( 14-12).

Evans (1976) provides a rigorous proof that the TD/NA objective function is convex
and therefore has a unique minimum. From an intuitive perspective, we can note that the NA
component’s convexity is ensured by the same arc cost function assumptions as in the NA
optimization problem (separable, non-negative and increasing). Also, the TD component is a
convex function. Since the sum of two convex functions is aso convex, we know the overal
objective function is convex.
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8.2.1.2.3 Datarequirementsand parameter estimation

In addition to the estimation issues discussed in conjunction with the UO-S-based NA problem,
we how must estimate the parameters of the TD component’s cost function. These parameters
relate the effect of the minimum travel cost between an O-D pair on the amount of travel flow
between that pair. Evans (1976) is slent on these estimation issues. Sheffi (1985) discusses
these issues in some, athough not complete, detall. To examine these estimation issues, we
must turn to the literature on spatia interaction modes.

Two genera methods exigt for estimating the parameters of a spatid interaction model
such as the Evans (1976) TD component, namely, ordinary least squares (OLS) and
maximum likelihood (ML) estimation. In both cases, the estimation procedure requires
estimates of: i) the minimum travel costs between O-D pairs; and, ii) aggregate flows between
O-D pairs. Obtaining these data items can be problematic since both are the expected
outcomes of the modding exerciseitsdlf. In the former case, the andyst may need to develop a
surrogate measure for the minimum travel costs since this is determined by the NA. Possible
surrogete measures include: i) assuming “free flow” (i.e, uncongested) conditions and
computing the shortest path between an O-D pair and its resultant travel time; or, ii) conducting
a survey and asking respondents for ther travel time estimates between particular O-D pairs.
Both surrogates are likely to introduce error. A third possibility, discussed by FHorian and
Nguyen (1978), is to peform a UO-S-based NA using the known O-D matrix to obtain
reasonable estimates of the O-D minimal travel codts.

Obtaining an O-D flow matrix will require either primary (survey) data, updating exigting
data or through some estimation procedure. Updating existing but dated O-D matrices can
occur using methods such as growth factor methods, athough these methods are rdliable only
over short-term planning horizons (see Ortdzar and Willumsen 1990). Procedures dso exist for
edimating O-D matrices from link flow observations. Sheffi (1985) provides a basic abeit
dated discusson of these methods; other references include Cascetta and Nguyen (1988), Fisk
and Boyce (1983), Nguyen (1984), Speiss (1987) and Yang, lida and Saski (1991, 1994).
Bdl (1991) discusses a gatistica procedure for estimating O-D matrices from combined traffic
counts/survey data.

Once the required data items are in place, the andyst must choose between OLS and
ML estimation of the TD parameters. Fotheringham and O’ Kéelly (1989) provide an accessible
discusson of both estimation procedures. Sen and Smith (1995) provide a more rigorous
review of OLS and ML egtimation aswell as performance results of different agorithms with the
approaches.

OLS is the classc and commonly-known “regresson” agpproach to estimation. This
requires trandformation of the non-lineer TD modd to a linear form. Once the modd is
linearized, standard dtatistical packages such as SPSS™ or SAS™ can be used to estimate the
parameters. While straightforward, OLS estimation of the TD parameters has some problems,
including difficulty deding with zero O-D flows and mideading goodness-of-fit datigtics
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reported by standard datistica packages when applied to a log-transformed model. These
problems do not occur with ML estimation procedures. In this case, we are trying to generate
the model parameters that maximize the likelihood of reproducing the observed data from a
theoretical digtribution. For example, with a doubly congtrained spatid interaction modd we
can typicaly assume that the interactions result from a multinomia probability digtribution (Baity
and Mackie 1972). Then, we edimate the model parameters by determining vaues that
maximize the likelihood that the observed O-D flow matrix would result from this theoretical
digribution. Determining these parameter vaues requires some type of non-linear search
technique such as the Newton method (again, see Fotheringham and O'Kelly (1989) or Sen
and Smith (1995) for discussions). While ML estimates are more reliable, procedures for ML
edimation are not as avalable as OLS procedures. A spatid interaction modd-specific
estimation package that uses ML proceduresis SIMODEL (Williams and Fotheringham 1984).

As noted above in the section on “Market equilibrium and the shortcomings of the four-
step approach,” the Evans (1976) mode has been tested empiricdly. In fact, it is one of the
few equilibrium-based travel demand models that has been subject to empiricd vdidation. The
studies by COM SIS (1996) and Boyce, Zhang and Lupa (1994) demonstrate the superiority of
the Evans (1976) modd relative to the classic four-step approach. However, more extensive
empirica vadidation of this and other equilibrium-based travel demand models is certainly
warranted.

8.2.1.2.4 Solution procedure

Evans (1976) developed a very efficient solution procedure for the TD/NA modd, specificdly,
the Evans partial linearization technique. This technique is closdy related to the convex
combinations method; the two methods differ primarily with respect to the direction-finding step
a each iteration. The direction-finding step in Evans conducts only a partid linearization of the
objective function at the current solution. Evans method is only gppropriate when O-D travel
demands are cong stent with a doubly constrained spatia interaction mode (Friesz 1985).

The directionfinding step of the Evans partid linearization technique involves
computing an auxiliary solution for the O-D flows. The agorithm computes the shortest path
tree from an origin to al destinations based on the current iteration’s flow costs. Based on these
cods an auxiliary O-D flow matrix is computed using the partialy linearized objective function.
In turn, the auxiliary O-D flows are used to caculate auxiliary link flows. Then, an optima step-
Sze routine determines the proper adjustment of the current solution.

Evans (1976) method is generdly more efficient computationdly than gpplying the
convex combinations to the same problem. Although it still requires the mgor computationa
effort of computing shortest paths from each origin, the agorithm tends to converge faster than
convex combinations since it adjusts the entire O-D matrix during each iteration. In contras,
convex combinations updates only a subset of the O-D flows during each iteration. The rlative
advantage of Evans over convex combinations is related to the number of postive interzond
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flows in the O-D matrix. The performance of the convex combinations method may be more
competitive if the O-D matrix contains some zero eements (Boyce, LeBlanc and Chon 1988).

8.2.1.3 NA/MS/TD (Florian and Nguyen 1978)

8.2.1.3.1 Assumptions
i) two modes (*automohbile’ and “ public trangt”);
i) separable cost functions for automobile mode ( 12-59);
i) non-negative cost functions for automobile mode ( 12-63);
Iv) increasng cos functions for automobile mode ( 12-64);
V) public trangt arc costs are fixed and exogenous,
vi) TD component is a separable demand function in the form of a spatid interaction
(“gravity”) type function with an exponentid cost function ( 14-13);
vii) MS component isabinomid logit modd ( 14-14).

8.2.1.3.2 Modd structure

Forian and Nguyen (1978) combine the UO-S NA modd with a combined entropy-maximizing
MSTD component (see Ortdzar and Willumsen 1990). The MS/TD component combines a
binomid logit modd (MS) with a doubly congtrained spatid interaction modd (TD). The two
models share the same parameter to control the cost function effect in the gpatia interaction
model aswell asthe moda split disperson.

The objective function in the Florian and Nguyen (1978) conssts of three components (
14-15): i) an entropy component that determines TD and MS for the automobile mode; ii) a
modified entropy component that determined TD and MS for the public transt mode; and, iii)
the standard UO-S NA cost component. The modification of the public trandt entropy
component accounts for the fixed travel costs assumed for that mode. Components i) and ii)
together comprise the combined TD/MS for both modes. The decisons variables to be
determined when minimizing this objective function include: i) the aggregate travel demand for
the automobile mode between each O-D pair; ii) the aggregate travel demand for the public
trangt mode between each O-D pair; iii) the route flows for the automobile mode; and, iv) the
arc flowsfor the public transit mode.

Congraints on the Horian and Nguyen (1978) TD/MS/NA mode comprise the
sandard aggregate travel demand congtraints, dbeit modified to account for the particulars of
their “two modes with fixed cogts for one mode’ modd. These condraints include: i) flows for
both modes leaving a degtination must sum to the known (exogenous) total outflow from that
degtination ( 14-16); ii) flows for both modes entering a destination must sum to the known
(exogenous) totd inflow to that destination ( 14-17); iii) route flows for the automobile mode
between an O-D pair must sum to the aggregate automobile travel demand for that O-D pair (
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14-18); iv) the totdl flow on an arc is equa to the automobile flows on routes that use that arc
plus the public trangt flow contribution to that arc (this latter quantity may be zero if routes are
separated) (14-19), and; v) aggregate travel demands and route flows for both modes must be
non-negative ( 14-20), ( 14-21).

The Horian and Nguyen (1978) model offers some practica advantages with respect to
parameter estimation and computationd tractability. However, these advantages require some
theoretica codts, particularly with respect to assumptions regarding mode behavior and modal
interactions. Firgt, note that the model only alows two modes; this can be a drawback when
andyzing travel demand in large urban areas with multiple modes. Second, note thet travel costs
(including travel time) for public trangt are fixed, meaning that these cogts are not affected by
congestion. Thus, the model assumes that public trangit travel times remain congtant even when
the network is highly congested. This is not a problem if the public trangt mode is separate
from the automobile network (e.g., subways) but can be a problem when public trangt shares
the automobile network. This problem is mitigated to some degree if the public trangt schedules
are accurate reflections of actua travel times, dthough these schedules may become less
accurate when forecasting more congested conditions in the future. Also note that dthough
public trangt is not affected by congestion, public trangit can affect automobile congestion. The
totd flow on an arc is comprised of the automaobile flow plus any contribution made by public
trangt; this can be modified by flow equivdency factors ( 14-19).

8.2.1.3.3 Datarequirementsand parameter estimation

In addition to the flow cost function estimation issues discussed in conjunction with UO-S

based NA, the Forian and Nguyen (1978) modd requires the estimation of a sSingle parameter.

This parameter controls both the cost function effect in the TD component as well as choice
dispersgon in the MS component. While convenient for estimation purposes, this requires a
sngle parameter to serve a “double role’ and introduces error into both components (see
Ortdzar and Willumsen 1990). However, Florian and Nguyen (1978) dso discuss the
possihility of usng two mode-specific parameters.  This reduces the harsh informationd

requirements imposed on a sngle parameter to some degree, dthough each parameter is ill

required to control TD and M S effects for that mode.

Florian and Nguyen (1978) provide explicit discusson of parameter cdlibration for their
modd. They assume that an O-D flow matrix is available from survey or secondary sources,
this provides the tota outflows from origins and inflows to dedtinations. Their procedure
requires first performing a UO-S NA. This assgnment provides estimates of the O-D minimum
travel cost values (i.e, ( 12-18)) for the automobile mode. A smple shortest path caculation
within the public transt network provides the corresponding vaues for that mode. Then, using
the entropy-maximizing principles developed by Wilson (1967, 1974), the parameter can be
caculated by attempting to get the predicted weighted mean trip length to match the observed
weighted mean trip length as closdly as possible. Again, the literature on spatid interaction
modd cdibration (e.g., Fotheringham and O’ Kdly 1989) provides guidance.
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8.2.1.3.4 Solution procedure

Florian and Nguyen (1978) formulate a very efficient solution procedure for their modd.
Similar to Evans (1976) partid linearization technique, their procedure is a modification of the
convex comhbinations method. Again, the main modification concerns the direction-finding step.

The Horian and Nguyen (1978) reformulates the direction-finding step as a modified
Hitchcock transportation problem, a specid case linear programming (LP) problem that
digtributes flows between O-D pairs based on fixed arc costs. The modified Hitchcock LP
determines an auxiliary solution in terms of the mode-gpecific O-D flows. After solving the LP,
auxiliary link flows are caculaied based on assgning the automobile O-D flow dong the
previoudy cdculated shortest path. If the auxiliary solution has not converged with the current
solution, an optimal step-sze calculation occurs and the flow is adjusted for the next iteration.

The Horian and Nguyen (1978) dgorithm il requires computing the shortest path trees
from an origin to al destinations. This determines the shortest path cost for the automobile
mode from the origin to each destination based on the current iteration’s flow costs. These
cods are used to initidize some of the auxiliary O-D flow varigbles for input into the modified
Hitchcock LP. This initidization alows converson of atwo-mode verson of the Hitchcock LP
to an equivadent one-mode problem. This results in substantid computationd savings in an
dready efficient LP problem. Neverthdess, the agorithm’s computationd effort is dominated
by the shortest path cdculations so the mgor question concerns the number of iterations
required for convergence. Neither computational nor andytica results regarding this issue are
provided by the authors.

8.2.1.4 TG/TD/IMSNA - STEM (Safwat and M agnanti 1988)

8.2.1.4.1 Assumptions

i) aseparate subnetwork represents each trangportation mode in the study area ( 14-
22);

i) separable cost functions ( 12-59);

iif) non-negative cogt functions ( 12-63);

iv) increasing cogt functions ( 12-64);

v) TD component is a separable demand function ( 12-61) in the format of alogit
model whose utility function conggts of the minimum travel cost between the O-D
pair and a non-transportation-rel ated destination attractiveness measure ( 14-23);

vi) TGisalinear function of each origin’s accessihility to destinations and other, non-
transportation relative “propulsveness’ factors ( 14-24).



8.2.1.4.2 Modd structure

The smultaneous transportation equilibrium modd (STEM) encompasses dl four components
of atravel demand andysis (Safwat 1987a; Safwat 1987b; Safwat and Magnanti 1987; Safwat
and Wadton 1988). The STEM objective function combines the UO-S NA component with
two entropy components, specifically a TD and TG component. STEM incorporates MS by
assuming that separate subnetworks represent each mode in the study area. Therefore, the
UO-S paths though the overal multimoda network are smultaneous MS/NA for travelers. The
disadvantage of this gpproach isthat STEM represents modal choice as a deterministic process,
this conflicts with STEM’s representation of the TG and TD decisons as stochestic (see
below). An advantage of this gpproach is it can accommodate mixed-mode trips, eg., “park
and ride’ trangt Stuations.

STEM formulates the TG and TD components through a random utility decison
process a the individud traveler level. The observed utility component congsts of two
vaiadles i) the minimum average travel cost between the O-D par ( 12-18); and, ii) a
composite variable reflecting the non-trangportation-related attractiveness of that destination (
14-27). The dedtination atractiveness composite variable is exogenous; this can be the result of
an externd, separate model (e.g., a regresson andysis of inflows againgt variables such as the
amount of retail or office space). The travel cost variable has an associated negative parameter
to reflect the disutility of travel. The unobserved or random utility component is assumed to have
a“type | extreme vaue digtribution,” in other words, the typica error assumption used to derive
alogit choice modd. Some additiond comments regarding this assumption are below.

The TG component generates flow from origins based on two factors i) a composite
variable that takes into account non-transportation-related factors on origin outflows ( 14-26);
and, i) the accessibility provided to that origin by the trangportation system ( 14-25). Smilar to
the degtination attractiveness composite variable, the origin compodte variable is exogenous and
can result from an externd modd (eg., a regresson modd of the observed trips agangt
resdentia population densty in the particular origin). The second TG component measures the
“accesshility” asthe expected maximum utility of thet origin. The “expected maximum utility”
measures the benefit of travel from the origin assuming random utility-maximizing decisons. The
access bility variable can assume any poditive or negative vaue, however, the STEM equivadent
optimization program includes a condraint that requires this variable to assume non-negative
vaues ( 14-32) snce negdive accessbility (and negtive origin outflows) are nonsenscd. The
firs component of the STEM equivadent optimization program’s objective function ( 14-28)
reflects the TG theoretical basis a the aggregate leve.

The TD component uses the utility function to distribute flows generated from an origin
among the destinations. Logit model-generated destination choice probabilities are multiplied by
the number of traveers leaving each origin to estimate the flow from the origin to each
degtination ( 14-23). The second component of the STEM objective function generates
entropy-maximizing O-D flow estimates consstent with the logit TD modd.
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The logit-based foundation of the TG and TD STEM components has both strengths
and weaknesses. A strong aspect of the logit foundation is its robustness and tractability. With
respect to robustness, Safwat and Magnanti (1988) demondtrate that STEM can approximate
any doubly condrained spdia interaction mode with fixed and known origin outflows and
destination inflows. This occurs by defining the origin propulsivesness varigble ( 14-26) and the
degtination attractiveness varigble ( 14-27) as functions of the known outflows and inflows
(respectively) and by redtricting certain STEM parameter vaues (see Safwat and Magnanti
1988, Appendix B). Thus, STEM can accommodate a wide range of data for defining factors
that affect TG and TD. This can dlow the modd to adapt to changes in available data and
relevant policy variables. With respect to tractability, the logit choice moded only requires very
basic cdculations and therefore can be gpplied to very large choice problems without undue
computationa burden.

The mgor weakness of STEM’ s logit foundation are theoretica problems related to the
Independence from Irrelevant Alternatives (I1A) property (see Wrigley 1985). This
property implies that the ratio of choice probabilities for any two aternatives should not depend
on any other dternatives available to the decison maker. ThellA property means that the logit
TD mode is misspecified Snce it cannot account for the spatid context of the destinations. This
is due to the logit assumption that choice errors among aternatives are independent (Wrigley
1985).

A smple example of the 1A property follows. Assume a decison maker is faced with
two dternatives. If athird dternative is added to the choice s, then the ratio of logit-based
choice probabilities between the origind two dternatives will remain the same (dthough the
absolute choice probabilities for both will decrease). Intuitively, this means that the third
dternaive will draw patronage equaly from both of the origind dternatives. This property is
problematic when dternatives are related, that is, they share some attributes in common. For
example, if the origind two dternatives are a “centrad city” and a “suburban” shopping
destination and a new “suburban” destination is added, we would expect the new dternative to
draw proportionately more from the origind “suburban” dternative than from the “centra city”
destination due to their shared attributes (Wrigley 1985). Fotheringham (1986) discusses a
more generd, spatid effect: individuads use a hierarchica information-processng heuridtic that
clusters proximal destinations. A logit-based TD component cannot capture these effects.

8.2.1.4.3 Datarequirementsand parameter estimation

In addition to the trangportation network data requirements inherent in estimating UO-S
equilibrium, STEM requires information on origin propulsiveness and dedtination attractiveness
factors. As noted above, STEM is extremdy flexible in this respect. The composite variables
associated with the origin and destinations can be the result of independent, externad models that
relate factors such as (say) land use, population density, office or sdes square footage to origin
outflows and dedtination inflows. This dlows STEM to be linked to land use and population
forecasts to predict impacts on traffic congestion, modd split and transportation system
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characterigtics.  In addition, as noted above STEM can dso accommodate known origin
outflow and degtination inflow information.

STEM contains two parameters tha require estimation (in addition to the link
performance function and va ue-of-time parameters associated with the trangportation network).
These are i) an accessibility parameter that relates trangportation system performance to the
number of trips generated from origins, ii) a travel cost disutility parameter that measures the
sengitivity of travel utility between O-D pairsto ther travel costs. Safwat and Magnanti (1988)
do not develop adatisticad digtribution theory for STEM that would dlow efficient smultaneous
edimation of both parameters. However, an estimation procedure could estimate each
parameter independently. Standard procedures for estimating linear utility functions within logit
models can be employed to estimate the travel cost disutility parameter (see Wrigley 1985); this
requires estimates of minimum travel costs between O-D pairs as well as an observed O-D flow
matrix. Egimating the accessibility parameter requires observations of origin outflows rdative to
minimum travel costs from thet origin.  Following the suggestion of Florian and Nyguen (1978),
the minimum travel costs for both estimation tasks could be established by conducting a UO-S
NA using the observed O-D flows.

8.2.1.4.4 Solution procedure

Safwat and Walton (1988) discuss two solution procedures for the STEM. The first
procedure, the shortest path to most needy destination (SPND) agorithm, is an extenson of
the convex combinations approach. Like convex combinations, SPND determines a feasible
direction a each iteration through a locad linearization of the objective function. The logit
distribution of trips (LDT) agorithm is an extenson of the Evans (1976) partid linearization
techngiue. Smilar to the Evans (1976) dgorithm, LDT uses a partid linearized objective
function to update O-D flows in a more dispersed manner than the fully linearization SPND
gpproach; consequently, its convergence is faster.

The LDT dgorithm is very smilar structurdly to the Evans (1976) partid linearization
agorithm. The dgorithm first updates link costs and then cd culates the shortest path tree from
each origin to al dedtinations. Based on the shortest paths costs between O-D pairs, the
dgorithm dlocates flows according to the logit TD function. This continues until solution
convergence

Computationa experience with the LDT agorithm indicates thet it can be used to solve
combined NA/MSTD/TG demands on large (i.e, urban-scade) networks in a reasonable
amount of time. Safwat and Waton (1988) report an application of the SPND and LDT
agorithms to the Audtin, Texas transportation network (3555 links, 2137 nodes, 598 traffic
anaysis zones and 271,625 O-D pairs). As expected, the LDT agorithm converged much
quicker than SPND. Totd CPU time (including generating an initid solution) was 4,734
seconds (79 minutes) on an IBM 4381 mainframe. This can be improved by a more
contemporary computationd platform (including current high-end desktop platforms).
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8.2.2 UO-G-based approaches
8.2.2.1 T2-NA (Dial 1995b, 1996)

8.2.2.1.1 Assumptions

i) onemode,
i) separable and linear cost functions ( 14-35) with the following components.
a) aflow-reated, deterministic component ( 12-40);
b) aflow-rdated, gochastically-weighted component ( 12-41);
C) adochadtic weight capturing varying reactions among travelersto the
stochasticaly-weighted component ( 12-42). Thisweight has afixed, O-D
specific probability digtribution ( 12-43).
iii) O-D flows fixed and exogenous.

8.2.2.1.2 Modd structure

Many network equilibrium modes include an arc generdized cost (GC) function such as ( 7-1)
to capture the effects of travel time and out-of-pocket expense on route and mode choice.
These functions equate time and money through a scdar vaue-of-time (VOT) parameter
estimated from survey data. However, asngle summary vaueis a poor reflection of a complex
redity in which VOTs vary among individud travelers. A large amount of informetion is lost by
usng a sngle VOT parameter: theoreticdly, the VOT should be a random or stochastic
variable to fit better variations in the population. Ben-Akiva, Bolduc and Bradley (1993)
illugtrate this information loss: a logit choice modd’ s goodness-of-fit increased subgtantidly with
agochagtic VOT parameter rlative to the traditional scalar parameter.

The observations regarding varying tradeoffs between travel time and out-of-pocket
expense can be gpplied more generdly. For example, travelers can have different information
regarding congestion-induced ddlay times. travelers may be perfectly informed or may guess
optimigicaly or pessmidicdly about congestion effects on routes. This involves varying
tradeoffs between “known” freeflow arc times versus “unknown” delay effects. Similarly,
travelers may have different risk atitudes when consdering variability in trave times this
involves varying tradeoffs between average arc travel times and their variances (Did 1995b).
Both cases require a stochagtic parameter in the arc GC function to adequately capture varying
tradeoffs in the traveler population.

Did (1995b, 1996) recently formulated the forma conditions and computationa
procedures for network equilibrium when arc GC functions have stochagtic parameters. The
arc GC functions contain two components, namely, a determinigtic disutility (d-disutility) and a
dochadtic disutility (s-disutility) with a stochastic weight (s'weight). These components must
combine in an additive manner. Given these arc cogt functions, the resultant equilibrium
conditions are a straightforward extension of the UO-S conditions:
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(UO-T2) Given a linear GC cogt function with a stochagtic weight or “s
weight,” a equilibrium no travelers with his or her paticular sweght has
another path with asmaller GC.

This extenson mirrors Smith’'s (1979) extenson of UO-S to the UO-G conditions that alow
vaiety in traveler behavior while dill requiring astable, minima cost pattern in the aggregate.

Under the UO-T2 conditions, the cogt function must be minima for every traveler
given their particular sweight (e.g., VOT). At first glance, this problem gppears intractable.
However, since the cost function ( 14-35) islinear only asubset of available paths between any
O-D pair will minimize GC for any VOT vaue. This reduced set makes the UO-T2 equilibrium
problem tractable. Similar to linear programming, the subset of paths that will minimize ( 14-35)
for any sweight are a smdl set of extreme points in cod-time space. Connecting these
extreme points forms an efficient frontier (EF) tha facilities cdculation of path choice
probabilities and therefore the equilibrium network flow loading.

Figure 8-2 provides an example of the EF and generdized cost equation in codt-time
gpace. A given monetary cost and travel time characterizes each path between an O-D pair
and hence provides a “location” in cog-time. Only paths that comprise the lower “boundary”
or EF are rationa since paths above that boundary are inferior with respect to cogt, time or
both. The EF not only limits the number of network paths considered, but aso smplifies the
path choice probability caculations. Note that a particular sweight determines the dope of (
14-35) and therefore which path dong the EF is optima for that traveler (i.e., the lowest tangent
between ( 14-35) and the EF). Therefore, the probability that a traveler will use a particular
path is the probability that their VOT dope will make that path optimad. Similar to linear
programming, we can caculate that probability for agiven path by only consdering its neighbors
on the EF. We can do thisin turn for each EF path to determine the proportional loading of
travelers given the assumed or estimated VOT digtribution.

Similar to UO-G, the forma UO-T2 conditions are aso in the format of a variaiona
inequaity problem ( 14-36) - ( 14-37). This dates that a flow pattern is UO-T2 if any other
flow pattern would result in higher total cogts, given each travelers sweight.

Did (1995a) dso developed a variation on T2-NA, namely, T2-tolls. T2-tolls defines
the arc cost function ( 14-35) in terms of a deterministic time component and a stochadticaly-
weighted monetary cost component. Given a set of O-D specific VOT PDFs, T2-tolls
determines the toll structure for arcs that results in a SO equilibrium.  As noted above in the
discusson on network equilibrium theory, a SO equilibrium is ided since it minimizes cost for
the entire traveler population as a whole. However, it is difficult to achieve in practice Since it
requires travelers to consder their marginal impacts on congestion.  The T2-tolls procedure
determines a pricing system that determines, based on each traveler’'s VOT, the margind socid
costs of congestion. When these are charged as link-based tolls, the resultant traffic flow is a
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SO equilibrium.  Since solving for this equilibrium tall Sructure is very efficient (see below), the
T2-tolls procedure could be avery practica and effective congestion pricing tool.

Figure 8-2: Example T2 efficient frontier
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8.2.2.1.3 Datarequirementsand parameter estimation

In addition to estimating the parameters of the link generd cost and performance function, a
magor task required is estimating the sweight probability density function (PDF). This PDF can
be in any continuous, discrete or mixed format, providing great flexibility. Nevertheless, the
PDF must be estimated from empirica data on traveler’ s route choices.

Although Dia does not develop an estimation procedure for the sweight PDF, he
provides some guidelines for this task. Did (1996) suggests that used routes could be paired
with their empirical use probability (i.e., the proportion of travelers usng route x divided by the
totad number of sampled travelers) and fit a cumulative densgity function using specid daidica
methods (see, eg., Slverman 1986). As noted above, Ben-Akiva, Bolduc and Bardley (1993)
have recently estimated a sochagtic VOT parameter in alogit mode choice model. However,
their estimation procedure assumes a lognormd digtribution for the VOT rather than the generd
digtributions alowed by T2.

8.2.2.1.4 Solution procedure

A T2-reduced simplicial decomposition (T2-RSD) dgorithm solves the variationd inequdity
problem ( 14-36) - ( 14-37) (Did 1995b). T2-RSD is based on the RSD dgorithm origindly
proposed by Lawphongpanich and Hearn (1984). In turn, RSD is based on the simplicial
decomposition (SD) procedures developed by Von Hohenbalken (1977). (Very broadly,
“dmplicid” is a technicd term referring to condructing entities usng the smplest entity
(“smplex”) in a given mathematica space; see Von Hohenbaken (1977) for a more technica
definition.)

SD decomposes the origind optimization problem into two parts i) a main or master
problem; and, ii) a minor or subproblem. The current solution of the master problem defines
the minor problem objective function. In turn, the minor problem’s current solution is fed to the
madter problem to redefine its objective function. These are solved in sequence and repeatedly
until convergence. In the RSD procedure of Lawphongpanich and Hearn (1984), the master
problem isthe variationd inequdity problem of Smith (1979) while the minor problem generates
minimum cost path trees (i.e., the shortest paths from each origin to al destinations) based on
current flow levels. As Lawphongpanich and Hearn (1984) note, the convex combinations
agorithm isaspecid case of the more generd RSD dgorithm.

T2-RSD decomposes ( 14-36) - ( 14-37) into a flow assgnment subproblem and a
master problem that updates the current solution by finding the optima combination of
subproblem solutions.  The subproblem loads flows based on current cost levels and the s
weight intervals of the efficient frontier. Although repestedly building shortest path trees based
on different sweights could potentialy involve a high computationa burden, the tree building
agorithm takes advantage of the minor differences between shortest path trees based on
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adjacent sweight intervas. Thus, each successve tree is a modification of the previous tree
rather than a new tree built from scratich. This makes the subproblem solution very efficient:
Did (1995b) reports solving 150 minimum path trees (600,000 minimum paths) for a 4,000
node/15,000 arc network per second. A linear programming (LP) embedded within a linear
gpproximation solves the master problem; this takes advantage of extremdy efficient LP solution
procedures. Did (1995b) aso develops a procedure for handling memory management and
oveflow problems in T2-RSD. The dficient solution agorithms and memory management
procedures suggests that T2 NA could be a practicd andytica tool for urban-scae travel
demand andysis.

8.2.2.2 Combined NA/M S (Dafer mos 1980)

8.2.2.3 Assumptions

i) oneor more modes,

i) non-separable cost functions ( 12-60);

i) the mgor influence on amode s arc flow cost is that mode s flow within thet arc (
14-41);

8.2.2.4 Modd structure

Dafermos (1980) presents a very generd NA/MS mode tha relaxes the redtrictive non-
separable arc cogt function inherent in most network equilibrium-based travel demand models.
Recdl tha these cogt functions assume that a mode's link flow cogt is only influenced by thet
mode' s flow within that link. This assumption does not recognize interactions anong modes
within a link nor the influence of flows within other links (eg., crosstraffic at intersection or
two-way traffic on the same dreet). This unredistic assumption is necessary for mode
tractability within the UO-S framework.

Working within the UO-G framework, Dafermos (1980) relaxes this assumption,
abeit not completely. Note that assumption iii) above requires amode s flow within alink to be
the dominant component that determines that mode's arc cost.  This is reasonable from the
perspective of crosslink influences; i.e., we would expect crosstraffic a intersections and
traffic in the oppodte direction to have less influence on congestion within a link than the traffic
in that link. However, this assumption is less tenable with respect to inter-modd interactions
within the same link. Neverthdess, even though inter-modd interactions within a link must be
subdued thisis an improvement over not capturing these interactions at all.

Dafermos (1980) states the NA/MS modd as a variationa inequdity (V1) problem (
14-42 ). This padlds the theoreticd development by Smith (1979), adthough Dafermos
(1980) dates and andyzes the modd a the more convenient link flow form ingtead of the
equivdent path flow form. The VI requires the UO-G equilibrium to be the lowest overdl arc
flow cost of any other feasible arc flow pattern.
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Assumptions regarding inter-link and inter-moda interactions are captured through a
linear link flow cogt function ( 14-38). This function conssts of two components. The first
component is the set (matrix) of dl arc flows in the network pre-multiplied by a matrix reflecting
the inter-moda and inter-link interactions. The second component consists of datic or “base’
link costs. As noted above, the flow interaction matrix must be structured so that moda flow on
an arc dominates that mode's cogt for that link. This ensures that the cost functions behave
correctly and a unique solution exists ( 14-41).

8.2.2.5 Datarequirementsand parameter estimation

The mgor additional data requirement and estimation task in the Dafermos (1980) MSNA
mode is estimating the inter-link and inter-modd interaction matrix in the link flow cogt function
(114-38). Primary data required to estimate inter-link interactions are detalled, time-stamped
flow and travel time observations across the network (or a sampling of key links). Estimating
interactions among different modes is more difficult; this requires detailed observations of moda
flow levels and link travel times. Given alack of primary data, andysts can make assumptions
regarding these interactions, this approach is often used to derive “flow equivaency factors’ to
capture modal interactions.

8.2.25.1 Solution strategy

Dafermos (1980) presents an dgorithm to solve the VI problem ( 14-42 ) given the specid
linear arc flow cogt functions ( 14-38). The dgorithm as presented is for a sngle mode
problem with link interactions, extending the dgorithm for multiple modes is a sraightforward
transformation using earlier work on multiclass trangportation networks by Dafermos (1972).

The dgorithm requires repeated solution of a UO-S NA problem given a specid
transformation of the link flow cost function. The link flow cost function includes a parameter
that strongly influences the convergence speed of the dgorithm. Determining the proper vaue of
this parameter requires computing the eigenvalues (characteristic roots) of two large matrices
(specificdly, ( 14-41) and afunction of ( 14-41) and the mode/link interaction matrix). This can
be very complex, particularly for the large matrixes implied by a large-scde gpplication (see
Press et al. 1992, 456-463 for a discusson). However, Dafermos (1980) notes that the
parameter can be sdected using atrid and error strategy and makes some suggestions about
interval bounds for the parameter.

The gpplicability of the Dafermos (1980) to large-scde networks is unclear. Both the
complexity of certain operations (particularly, caculating eigenvaues) and the large number of
iterations potentidly required for convergence imply that the Dafermos (1980) model may be
limited to sketch planning networks. However, this report reviewed this mode for
completeness as well as the posshility that a more efficient algorithm could be developed using
VI tools. Continued research isrequired.
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8.2.2.6 Combined NA/MSTD/TG (Dafer mos 1982)

8.2.2.6.1 Assumptions
i) oneor more modes,

i) non-separable cost functions ( 12-60);

i) the mgor influence on amode s arc flow cogt is that mode s flow within that arc (
14-41);
iv) non-separable demand functions ( 12-62);

v) the mgor influence on the modd flow between an O-D pair is that mode's trave
costs for that O-D pair ( 14-46).

8.2.2.7 Modd sructure

The Dafermos (1982) NA/MSTD/TG modd is a direct extenson of the Dafermos (1980)
UO-G-based NA/MS modd. In this case, the modd treats the travel demand between an O-
D pair as dadtic ingead of fixed as in Dafermos (1980). This accounts for the higher-level
TD/TG demands.

The modd is gated inthe form of aVI ( 14-47). The VI conssts of two components:
i) the link flow cogt functions; and, ii) a function that measures the travel  disutility. Formaly,
travel disutility isthe inverse function of the travel demand function ( 12-24). This measures the
generdized codt (disutility) associated with each travel demand level. The VI objective function
requires the combined link flow cogs and travel disutilities to be the aggregate minimal cost
pattern among al feasible patterns.

The VI objective function ( 14-47) corresponds to a generalization of UO-S market
equilibrium conditions at the individua level. These conditions dictate that any route between an
O-D par exhibiting postive flow has a trave disutility equa to the route's flow cost. If a
route' s flow codt is greater than the travel disutility than the flow on that route must be equd to
zero ( 14-48). Any travel demand pattern that satisfies this condition can be stated in a form
gmilar to the VI objective function ( 14-49). Aggregating this statement alows the relaxed
behaviorad conditions pioneered by Smith (1979): only the aggregate pattern is required to be
minimd rather than each individud trip.

The combined NA/MSTD/TG modd contains the linear link flow cost function from
the Dafermos (1980) NA/MS modd. The trave disutility functiond form is andogous: it
contains a matrix capturing the trave disutility interactions anong O-D pairs. This matrix must
be structured so that the influence of a mode's flow between an O-D pair dominates that
mode's travel disutility for that par. This ensures that the travel disutility functions behave
correctly and a unique solution exists ( 14-46).



8.2.2.7.1 Datarequirementsand parameter estimation

As with the UO-G-based NA/MS modd, the combined NA/MSTD/TG mode requires
edimation of the mode/link interaction matrix. In addition, the travel disutility matrix must be
estimated. This requires estimation of non-separable demand functions, i.e., demand functionsin
which the flow between an O-D pair depends on the set of minimum costs across dl O-D pairs
(although, as noted above, the flow-related cost for the given O-D pair is the assumed to be
dominant). The spatid interaction literature does not provide guidance for estimating non-
separable demand functions.  However, one could access spatid interaction estimation
techniques by structuring the travel disutility matrix so thet off-diagona eements are zero, i.e,
cong stent with separable demand functions.

8.2.2.7.2 Solution strategy

The combined NA/MSTD/TG modd’s solution agorithm is a direct extenson of the solution
drategy for the Dafermos (1980) NA/MS modd. The agorithm involves repeated solution of a
UO-S NA assgnment with dastic demand. The dgorithm requires transformations of the link
flow cost and trave disutility functions. These transformations include parameters that influence
strongly the convergence speed of the dgorithm. These parameters must be estimated from the
egenvaues of the modellink interaction and the travel disutility interaction matrices. This can be
difficult for large-scde travel demand andlyss. A trid and error search drategy to find these
parameters is dso possible, and Dafermos (1982) provides guiddines on the intervals for these
parameters.

Similar to the UO-G-based NA/MS modd, the efficiency of this agorithm for large-
scde travel demand andlysis is unclear. However, it is worth discussing this mode due to its
generdity. Continued research is required to test the algorithm for alarge-scale application and
perhaps improve the solution algorithm speed using reated solution techniques for VI problems.

8.2.3 DUO-based approaches
8.2.3.1 DUO NA (Janson 1991b)

8.2.3.1.1 Assumptions
i) onemode;

i) separable cost functions ( 12-59);

iif) non-negative cogt functions ( 12-63);
iv) increasing cogt functions ( 12-64);

v) O-D flowsfixed and exogenous,

vi) the study time period divided into discrete time intervas of equivaent duration ( 12-
31), (12-32).
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8.2.3.1.2 Modd structure

Janson’s (1991a, 1991b) DUO NA modd is adirect extension of the UO-S NA mode (Sheffi
1985). The objective function extends the minimization of the cumulative arc cost function
across dl network arcs to minimization of these costs across dl discrete time periods ( 14-50).
Thus, we essentidly extend the UO-S equivaent optimization problem across multiple, discrete
time periods and require minimization of the arc cost function across these time intervals.

The DUO NA (Janson 1991b) contains both static and dynamic congtraints. The Static
condraints are equivaent to the UO-S congraints with the added dimension of the discrete time
intervals. Specificdly, we require: i) flows on an arc during a given time period to be equd to
the summed flows that departed during any time period on any path that uses that arc during the
given time period ( 14-51); ii) the summed flow that departs during a given time period must
sum to the known flow departure total for that time period ( 14-52); and, iii) route flows during
any time period must be non-negative ( 14-53). The objective function plus these condraints is
exactly equivadent to the UO-S NA equivaent optimization problem when there is only one time

period.

A tempord path-arc incidence variable maintains correspondence between arcs and
paths during each time interva for flows that depart during the same time interva ( 12-37).
Note that this is atempora extension of the static arc-path incidence variable ( 12-9). A key
difference is that the Static incidence varigble is an exogenous congtant while tempora arc-path
incidence is a decison variable solved within the problem. In DUO, the arc compostion of
paths for flows that departed during a given time period cannot be predetermined since the time
interva of arc useis afected by travel cogts which in turn are affected by flow loadings (Janson
1991b).

The endogenous nature of arc-path incidence in DUO requires the problem to have
non-linear dynamic flow congraints to ensure flow continuity. First, we require flows to only
use eech arc on a given path only once during eech timeinterva ( 14-54). Second, we require
each path to use its arcs in a tempordly continuous and logicd manner relative to the travel
timesto each arc’snodes. Thisis accomplished by first measuring the total travel time on a path
from the origin to a given node for trips departing in a given time intervd ( 14-55). Then, we
force flow to usethe arcsin apath in atemporaly consistent manner.  Fow can only use an arc
during the interva that it reaches the from-node of that arc according to the cumulative travel
time to that from-node. If the cumulative travel time to the from-node is greater than or less
than the cumulaive “clock time’ (measured by the number of eapsed intervas times the
duration of each intervd), then the tempora arc-path incidence variable is forced to zero and
the path cannot use that arc (( 14-56) and ( 14-57), respectively).

Janson and colleagues have developed severd extensions of the basic DUO NA modd.
Janson (1995) formulates a DUO NA mode with known (fixed) arriva times in contrast to the
known departure times assumed in the origind formulation. Janson and Robles (1993)
developed a DUO NA modd that includes departure or arrival time choices, thus, travelers
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choose a departure or arivd time smultaneoudy with their route choices. This can dlow
modeling of travel timing decisons. Janson and Robles (1995) develop a “quas-continuous’
verson of the mode by dlowing fractiond (as opposed to integer) flows. This dlows better
representation of dynamic congestion effects such as spillback queuing effects downstream from
incidents such as accidents.

8.2.3.1.3 Datarequirementsand parameter estimation

The mgjor data requirement for the Janson’s (1991b) DUO modd is a time-specific O-D flow
matrix. Idedly, this requires O-D flow data “tagged” with the time of day when each trip
occurred. These data can be aggregated to the discrete time intervals of the DUO modd.
Since the DUO modd specifies a dynamic equilibrium for flows departing within the same time
intervd, the criticd “time slamp” is the departure time of each trip dthough the arriva times can
aso be used for modd validation. In contrast, the dternative formulation in Janson (19914)
requires “time stamps’ corresponding to arriva times.

If atempora O-D matrix cannot be obtained directly from primary data it must be
edimated. Janson and Southworth (1992) discuss a method that uses the dynamic traffic
assgnment procedure to estimate departure times from observed link traffic counts, these data
are often readily available. Another, less sophisticated, option is to temporaly disaggregete a
daily O-D flow matrix. The amplest method isto divide the O-D matrix equdly into the n daily
intervas implied by the specified time duration. However, snce O-D flows typicdly exhibit
morning and daily peaks rather than an even daily distribution this gpproach is crude. Daily O-
D flows could be digtributed over the time period of interest by using daily peak profile curves,
thiswould provide a more redlitic estimate of the time-dependent O-D flows

An issue that must be addressed when implementing the DUO mode are the
aopropriate time interva duration. Janson (1991b) suggests choosing an interva that is
goproximately four to five times the mean link time impedance in the Sudy area. This minimizes
flow estimate varigtion between intervals.

8.2.3.1.4 Solution strategy

Two solution dratgies are available for the DUO NA. Janson (1991b) formulates a heuristic
drategy, the dynamic traffic assignment (DTA) procedure, that generates “good” (near-
optima) solutions with reasonable computationa times. Janson (1991a) develops an exact
(optimd) dgorithm, the convergent dynamic agorithm (CDA).

DTA incrementdly assgns the known flows departing during eech interva to shortest
paths while anticipating future link volumes. Note that in a daic NA problem dl flow
assgnment occurs at the same “time” Therefore, the procedure can smply compute the
shortest paths from an origin to each destination based on the current levels of arc flows and
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cogts (athough these flows can be re-adjusted until convergence to equilibrium). In the dynamic
realm, it is unknown how current and future arc volumes will be affected by assgnments from
other origins. Thus, after each assgnment the DTA procedure must project current arc flow
assgnments into future time intervals. DTA projects future arc flows based on current arc flow
levels, ratios of future (not yet assigned) travel demands and flows assgned in previous intervas.
This assumes that reasonable estimates of future arc flows can be made by multiplying current
arc flows by factors that account for travel demand levels in future time intervas. DTA uses
these projections only to caculate the shortest paths; these flows are only assigned during their
aopropriate timeintervals.

Prgjecting the current arc flows into future time intervas occurs through a weighted
combination of arc flows assgned thus far during the currently projected interva and the find
arc flows from the previoudy projected interva. The weight given to the current intervd’s flow
during an origin's flow assgnment is equa to the percent of tota trip flows assgned to that
point: this ranges from 0% during the firgt origin's flow assgnment to 100% during the last
origin's flow assgnment. Since these weights depend on the order in which an origin is
congdered, origins are randomly selected in order to randomize the arc flow loadings.

The CDA drategy combines the convex combinations method with a linear
programming gpproach. Convex combinations solves for a UO equilibrium with fixed node time
intervals. This solution is then passed to a linear program to update node time intervals. These
updated node time intervals are then passed back to the convex combinations routine for flow
updating. This continues until convergence; this is measured based on the number of node time
intervals changed since the ladt iteration.

8.2.4 SUO-based Approaches
8.2.4.1 SUO NA (Fisk 1980)

8.24.1.1 Assumptions

i) onemode,

i) separable cost functions ( 12-59);

i) non-negetive cogt functions ( 12-63);

Iv) increasing cogt functions ( 12-64);

v) O-D flowsfixed and exogenous,

Vi) route costs are random variables congsting of an observable component and an
unobservable or random component whose expected vaue is zero ( 13-10), ( 13-
11).

8.2.4.1.2 Modd structure

The SUO NA problem loads fixed O-D flows onto a network in a manner consstent with the
SUO equilibrium conditions ( 13-8) - ( 13-11). As discussed above, the stochastic component

48



attempts to reflect limited information and subjectiveness. From atheoretica perspective, thisis
an improvement from the UO conditions that assume perfect information and rationaity on
behalf of travelers,

There are severd formulations of the SUO NA. These formulations differ mainly with
respect to the route choice probability caculations. Generaly, there are two mgor route
probability mechanisms.  Both fdl within the relm of random utility theory, meaning thet
travelers utility functions for route choice are assumed to have a measured and random
component. A logit-based network loading routine is very tractable, but has some theoretical
problems. Fird, the logit-based loading is insengtive to network topology; this results in too
much flow being alocated to overlgpping routes. Thisis due to the logit's modd 11A property:
the model assumes that choices are independent and do not share attributes. A second problem
isthe logit reliance on travel cogt differences only. Thisimplies that the magnitude of the route
length isignored, eg., afive minute travel time difference has the same effect whether the route
lengths are ten versus fifteen minutes or 120 versus 125 minutes in length (see Sheffi (1985), pp.
302-305 for a clear illudration). These properties weaken the behaviora foundation of the
logit-based flow pattern. Despite these behaviora weaknesses, logit-based network loading is
popular due to the logit mode’ s tractability.

Probit-based network loading assumes a very generd error structure, meaning that
route choice utilities can be corrdlated. Probit-based network loading tekes into account
network topology and route length magnitudes. However, behaviord redism is gained at the
expense of more difficult modd caculaions. A closed-form (andyticd) solution does not exist
for the generd probit modd, meaning that calculations must often be obtained through Monte
Carlo smulation or other, computationa ly-intensve methods (Sheffi 1985).

Fisk’s (1980) SUO NA modd uses a logit-based route choice mechanism. SUO NA
adds an entropy-based route flow component to the UO NA objective function ( 14-58). As
noted above, an aggregate-leve entropy component is condstent with a random utility/spatia
interaction choice mechanism at the individud-traveler level (Fotheringham and O'Kelly 1989;
Oppenheim 1995). The integration of the UO-S NA arc cost component and the route choice
entropy component in the Fisk (1980) objective function has some interesting properties. A
parameter associated with the route choice entropy component measures travelers sengtivity to
route costs. When this parameter tends to infinity, the route choice entropy component tends to
zero and a UO-S NA is obtained. Thus, the UO-S NA modd is a specid case of the more
genera SUO NA mode. Conversdly, when the parameter tends to zero the entropy
component becomes dominant. In this case, flows are evenly dispersed among routes, i.e,
travelers do not consider costs when making route choices (Damberg, Lundgren and Patrikson
1996; Fisk 1980). Fisk (1980) notes that the full 11A route choice properties only occur when
the parameter vaue is zero; the 1A properties weaken as the parameter becomes more

positive.
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For dl postive vaues of the traveler cost sengitivity parameter, the SUO NA modd will
generate a postive flow leve for each network route regardless of itstravel cogt, athough many
of these flow levels can be quite smdl. Since the number of routes can be quite large, solution
agorithms must either define a set of plausible or efficient routes (see, e.g., Dia 1971) or must
work directly with arc flow leves rather than route flow levels (Damberg, Lundgren and
Patrikson 1996).

Congraints on the SUO NA problem correspond to standard flow consistency and
non-negativity conditions. These include: i) the summed flow on routes between an O-D pair
must sum to the aggregate flow between that O-D pair ( 14-59); ii) the summed flows on dl
routes that use a particular a'c must sum to the totd flow on that arc ( 14-60); and, iii) route
flows must be non-negative ( 14-61).

8.2.4.1.3 Datarequirementsand parameter estimation

In addition to cdibrating link generalized cost and link performance functions, Fisk's (1980)
modd requires estimation of the traveler cost sengtivity parameter. Since this parameter’ s vdue
is uniquely determined by the optima network flows; it can be cdibrated from observed flow
levels in the network (Damberg, Lundgren and Patriksson 1996; Fisk 1980). However, this
causes some difficulties since these flows are endogenous to the moded (Anas 1988).

Huang (1995) devedoped a combined dgorithm for solving and cdibrating Fisk’'s
(1980) modd. The combined agorithm starts with an arbitrary parameter vaue and solves for
the SUO flows based on that value. The algorithm then compares the predicted tota network
flow cost to an exogenoudy-determined observed vaue. If the predicted and observed values
do not match, the algorithm increments the parameter vaue upward or downward (depending
on the comparison) and resolves for the new SUO flows. The combined dgorithm is
compuitationa ly-intense since it requires repeated solution for the SUO equilibrium flows. This
can be mitigated to some degree by a good initid guess for the parameter value. Also, sSince
lower values of the parameter require the enumeration of larger number of paths it is more
efficient to dart with a larger vaue for the parameter and dlow the dgorithm to work
“downward” to the correct value.

8.2.4.1.4 Solution procedure

Severd solution strategies have been proposed for the SUO NA problem. As a very genera
solution drategy, the method of successive averages (MSA) can be used with any stochastic
network loading routine, i.e, logit or probit (Sheffi 1985; Sheffi and Powell 1982). This
method is discussed in more detal below in the section on super and hypernetworks.
Discussion in this section is limited to solution dgorithms specific to Fisk’s (1980) modd.

Chen and Alfa (1991) develop two adgorithms based on the convex combination

methods and Did’s STOCH network flow loading dgorithm (Did 1971). Since the dgorithm
optimizes the sep length during eech iteration, the agorithms converge much quicker than
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MSA. However, the Chen and Alfa (1991) agorithms may result in inconsistent flows and can
require balancing procedures to enforce consstency (Bell et al.1993). Damberg, Lundgren and
Patriksson (1996) developed a heuritic solution srategy that provides solutions directly in
terms of path (as opposed to arc) flows.

An important task in operationaizing Fisk’s (1980) modd is determining the subset of
paths between each O-D pair that should be considered when loading flows. Since logit-based
network loading theoretically loads positive flow levels on every route between an O-D pair, we
must be careful in how we redtrict the extremdy large number of O-D routes to a more
manageable subset. Fisk (1980) discusses two methods: i) shortest path assgnment; and, ii)
Did’s (1971) STOCH dgorithm. The former method loads flow onto the shortest path
identified during each iteration. The latter method uses a logit function directly to load flows
onto the set of efficient paths during each iteration. The “efficient paths’ are those that only
include links that bring the traveler closer to the degtination and farther from the origin (i.e, a
path is not efficient if it brings the traveler closer to origin during any step). The path subset
sdection definition can vary among SUO solution agorithms, these specifications trade-off
computationa efficiency versus error introduced by not considering some paths between an O-

D pair.

Leurent (1995) recently refined both the Fisk (1980) minimization program as well as
Did’s(1971) STOCH dgorithm. The improvement to the Fisk minimization program involves a
more sendtive convergence test. The improvement to STOCH provides a more dable
definition of “efficient paths,” dlowing path caculations to occur only once rather than during
each iteration. Both refinements make the Fisk SUO model more competitive to deterministic
approaches with respect to computationa effort.

8.2.4.2 NA/MSTDI/TG - Super- and hyper-networks (Sheffi and Daganzo 1980)

8.2.4.2.1 Assumptions

i) anexpanded network represents the transportation system ( 14-62);

i) the expanded nodes congst of basic nodes ( 12-48) representing the transportation
network (eg., street intersections and public trandt stops) and a set of virtud or
non-basic ( 12-49) nodes that represent TG and M S decisions ( 14-63);

i) the expanded network arcs condst of basic arcs ( 12-50) representing the
trangportation network (e.g., street segments and public trangit route segments) and
aset of non-basic or entrance/egress arcs ( 12-51) that represent TG and MS
decisons ( 14-64);

iv) flow cogts are fixed for arcs in the entrance/egress network;

V) separable cost functions ( 12-59)for arcs in the basic network;

vi) non-negative cost functions ( 12-63) for arcsin the basic network;

vii) increasing cos functions( 12-64) for arcsin the basic network.
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8.2.4.2.2 Modd structure

The supernetwork approach (Sheffi 1985; Sheffi and Daganzo 1978, 1980) extends the classic
network equilibrium problem to encompass other travel decisons such as TG, TD and MS.
The fundamentd idea is degant: augment the “standard” transportation network with abgiract
links and synthetic cost functions that represent other travel decisons. Solving for an equilibrium
flow pattern for the extended network provides consstent demands across the trave
components represented.  Sheffi (1985) provides a rigorous treatment of this method, while
Slavin (1995) provides amore accessible review.

A supernetwork consists of a basic network and an extended or non-basic network
(see Sheffi 1985; Sheffi and Dagnazo 1978, 1980). Fgure 8-3 provides an example for
combined NA/MS. In generd, the basc network corresponds to a detaled, “physica”
network with deterministic flow-dependent cost functions, eg., an urban street network. The
flow pattern in this network represents a solution to the NA travel demands. Conversdly, the
non-basic network conssts of “abgtract” links with stochagtic flow-independent cost functions
that reflect mode, dedtination or trip generation choices. Consequently, the non-basic flow
pattern provides the TG, TD and/or MS travel demands.

The supernetwork equilibrium conditions correspond to a SUO equilibrium across the
augmented network. Specificdly, these conditions require: i) the total demand between an
“entrance’” basic node (i.e,, a basic node directly connected to one or more origins) and an
“egress’ basic node (i.e., a basic node directly connected to one or more destinations) is equal
to the total aggregate demands between dl O-D pairs connected to that basic node pair times
the probability of that node pair being used ( 14-65); ii) the flow on dl paths between a basic
network entrance/egress pair must sum to the tota demand between that pair ( 14-66); iii)
positive flow levels only occur on routes that are tied for the minimum cost level between any
basic network entrance/egress node pair ( 14-67), ( 14-68); and, iv) dl route flow levels must
be non-negative ( 14-69). Note that any stochastic loading routine can be used to caculate the
usage probability for basic network entrance/egress node pairs. “Supernetwork” refers to this
generd case while “hypernetwork” refersto the particular case of a probit choice mechanism.

The digtinction between deterministic, flow-dependent costs and stochastic, flow-
independent costs implies that, a equilibrium, the UO-S conditions hold for the basic network
while the SUO conditions hold for the expanded network. Thus, the user equilibrium dimension
derives from the basic network while the stochastic dimension results from the non-basic
network. The stochagtic costs on the non-basic network links relates to random utility theory
and therefore is appropriate for modeling TG, TD and MS. However, the deterministic
redriction on the basic network link costs is for computationd tractability. In particular, this
assumption alows changes in basic network flows to affect only the average cost between a
non-basic O-D pair. This alows the choice probability for a non-basic link to depend only on
the minimum impedance rather than a complete enumeration of dl basic network paths between
anon-basic node pair (Sheffi and Daganzo 1980).
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8.2.4.2.3 Datarequirementsand parameter estimation

Basic data requirements and parameter estimation tasks associated with the supernetwork
goproach are estimating the parameters of the random uitility-based demand functions for each
aggregate travel demand encompassed (i.e., MS, TD and/or TG). Since the NA component is
determinigtic, these edimation tasks are draightforward and do not have the difficulties
asociated with the parameter estimation for SUO NA. The basc task is to estimate the
parameters of the random utility functions. This requires observations of individud-leve travel
decisons and the hypothesized characteristics that influence these decisons. Since the
supernetwork modd is aggregate, these characterigtics should be decison-specific (eg.,
accesshility, level-of-service) rather than individua characteridtics (e.g., household income).
Sheffi (1985) provides an accessible dbelt brief review of estimation procedures, a more
detailed and technical discusson can be found in Ben-Akivaand Lerman (1985).

Figure 8-3: Example supernetwork for NA/IMS

Origin “Virtud” origin “Virtud” destinetion Degtination

Automobile basic network

Trangt basic network

“Non-basic network (mode choice)
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8.2.4.2.4 Solution procedure

Any SUO solution method can solve for this equilibrium over a supernetwork.  Sheffi and
Daganzo (1980) provide a method that is very smilar to the UO-S convex combinations
agorithm. Sheffi (1985) and Savin (1995) discuss MSA as a good, generd purpose solution
agorithm that can be gpplied with any stochastic network loading routine.

MSA isamilar to the convex combinations method. 1n this case, the step-size dong the
feasble direction is not determined during each iteration. Instead, a sequence of step-sizes are
predetermined before dgorithm execution. Many types of step-sze rules are feasible; the only
requirements are that an infinite sum of the step-sizes and the square of the Step-sizesis infinity
and less than infinity, respectivey (i.e., the step-szes should generdly be positive but less than
one). A smple sep-sze rule that meets this requirement is 1/n, where n is the iteration number.
The move direction is determined through a dochestic network loading modd. The
requirements on the move direction are dso quite generd: the move direction must be a descent
direction only on average (Sheffi 1985). This provides agreat ded of flexibility for the network
loading routine (e.g., logit, probit).

MSA'’s fixed step length means that the agorithm requires a large number of iterations
to converge (Chen and Alfa 1991; Huang 1995). Another MSA weaknesses is that its
convergence is not monotonic, i.e., the flow change does not necessarily become increasingly
gndler. This rdates to the randomness of the move direction and the fixed move sze. The
convergence criteria should therefore be based on flow characteristics over severd previous
iterations rather than comparing the current flow with just the last iteration (Sheffi 1985).

8.2.5 Combined UO-S/SUO Approaches
8.25.1 TG/TD/IMSNA - Trip consumer approach (Oppenheim 1995)

8.25.1.1 Assumptions
i) oneor more modes,

i) non-negetive cogt functions ( 12-63);
i) grictly increasing cost functions ( 12-64);

iv) separable cost functions ( 12-59) (dthough two-mode non-separable functions are
possible);

8.25.1.2 Modd Structure
Thetrip consumer (TC) approach (Oppenheim 1995) formulates travel demands within classic



microeconomic consumer demand theory. Oppenheim (1995) obtains consstency among
individua decisons and aggregate equilibrium conditions by linking the utility structures for
individud travelers to corresponding aggregate-level optimization problems.  Solving the
optimization problem generates the equilibrium, aggregate-level travel demands corresponding
to the pogtulated individua-levd utilities. In addition, severad well-known and efficient solution
dgorithms are available for solving the optimization problems. The TC gpproach is extremdy
broad and flexible; severd established travel demand models can be derived as a specid case
of this genera (Sheffi 1985; Evans 1976; Safwat and Magnanti 1988).

The TC approach solves the travel demand problem by restating it as an aggregate-level
verson of the classc consumer utility maximization problem in microeconomic theory ( 14-
75) - ( 14-77). In this problem the consumer attempts to choose a “bundl€’ of goods that
maximizes his or her benefit subject to a maximum expenditure limit (“budget”). At a basic
level, we can view trangportation services within this framework. Similar to more traditiond
“goods,” transportation services offer benefits (i.e., accessbility to destinations) but incur costs
(time, money) thet travelers have varying willingness or ability to pay. A traveler chooses the
type and levels of trangportation services that maximizes his or her benefit subject ther ability or
willingness to pay. Stating the travel demand problem in this format requires: i) formulating an
individua-leve utility structure that encompasses the rdevant travel demand components, i)
restating the individua-level choice utilities as aggregate-levd tilities; and, ii) trandforming the
choice-specific or indirect utilities to direct utilities that, when maximized, generaes the
equilibrium travel demands.

In the generd case, the TC approach specifies individua, choice-specific utilities within
the random utility framework. Asdiscussed previoudy in this report, each choice utility conssts
of a measured and a unmeasured component. The measured utility component can have
arbitrary length and form, providing a high degree of flexibility for incorporating relevant, policy-
related and behavioral factors. In contrast with the standard logit error assumption, the TC
goproach assumes that the that the stochastic components are independently and identicaly
Gumbd digtributed. Thisdlows atractable nested logit structure to represent interrelationships
among the four travel demand utilities.

The nested logit (NL) approach is a method for representing interrelationships among
choices in arandom utility framework (see Wrigley 1985). The NL mode assembles individud
choice utilities into a compodte utility structure by “nesting” expected utilities of related choices
within a choicg's utility function. This nesting structure often represents a sequentid decision
process, e.g., a NL mode would reflect the tempora sequence of “Choice A then Choice B”
by nesting Choice B's expected utility within the utility function of Choice A. In this case,
Choice B's utility is an expected utility snce its benefit depends on its choice probability.
Another, equdly vdid, interpretation of the nesting dructure ae hypothesized
interrelationships among the travel demand components and the relative effects of the
unobserved utilities (see below). This interpretation does not assume a tempora choice
sequence, dthough the mechanics are identicd.
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Appendix 14.5.1 provides the indirect and expected utilities corresponding to each
travel demand component. The expected utilities provide the bass for utility nesting. For
example, when modeiing MS and determinigtic NA, the andyst could hypothesize a nesting
gructure of MSUO-SNA. This would reflect the hypotheses that: i) route choices within a
particular mode are more Smilar than route choices between modes; and, ii) NA has a smdler
stochastic component than MS (i.e,, the andyst is more certain about the NA utility function
specification than the M S specification). In terms of the utility functionsin Appendix 14.5.1, this
would require nesting ( 14-87) within ( 14-82). Smilarly, hypothesizing a TGITD/IMSUO-S
NA nested structure would require nesting ( 14-85) in ( 14-83), ( 14-83) in ( 14-81), and ( 14-
81) in (14-78).

The nested utility structures are used in the parameter estimation phase of the TC
goproach. The results of the parameter estimation phase may result in a modification of the
nesting structure.  After parameter estimation, a particular modd within the TC framework can
be solved using the direct, aggregeate-leve utilities corresponding the indirect, individua-leve
utility structure and the estimated parameters. These direct, aggregate-levd utilities are the same
regardless of the resulting nesting structure; the nesting structure influences the direct, aggregate-
level utilities only through the edtimated parameter values. More detalled discusson on
parameter estimation is provided below.

Utility theory dictates that if individud-levd utility functions are in the Gorman form
they can be redated a the aggregate leve by replacing individud-levd variables with the
corresponding aggregate-leve variables for a given cohort (e.g., an origin zone). The Gorman
form requires the individud-leve utility function to condst of two separable components,
specificaly, an individua-specific component and a component that represents a common
response to costs given a specified budget level (Varian 1992). These restrictions are mild for
travel demand utilities, particularly since the budget congtraint can be dropped from the problem
(Oppenheim 1995).

Utility functions such as nested logit-based functions commonly represent choice-
specific utilities, i.e, the utility obtainable from a particular decison, given that choice.
However, solving for the utility-maximizing demands requires restating these indirect or
conditional utilities as direct or unconditional utility functions that encgpsulate preferences
across all dterndives.  This involves a sraightforward mathematica transformation that does
not impose any additiond behaviora redrictions.  Given an indirect utility structure, we can
formulate a congrained optimization problem that maximizes indirect utility subject to a budget
condraint. Then, finding the dual or mirror of the indirect utility maximization problem provides
the corresponding direct utility function (Varian 1992).

The optimization problems that generate the equilibrium aggregate travel demands

follow directly after deriving the aggregate-leve direct utilities. The objective function of the
optimization problems is a smple additive function of the direct utilities, i.e, including a trave

56



demand component smply requires adding that direct utility component to the objective
function. Similarly, it is Smple matter to gppend the congraint set with the additional congtraint
required for the travel demand component. For example, given the direct utilities and
condraintsin Appendix 14.5.1 ( 14-89)-( 14-101), solving for mode and UO-S route demands
only (i.e, TG and TD demands are given) involves the following optimization problem:

MIN (14-91) + ( 14-92)
subject to:
(14-96)
(14-97)
and the non-negativity congrants.
(14-98) - (14-101)

Solving for the complete travel demands (TG, TD, MS, NA) with UO-S/NA requires.

MIN ( 14-89) + ( 14-90) + ( 14-91) + ( 14-92)

subject to:

(14-94)

(14-95)

( 14-96)

(14-97)
and the non-negetivity condrants.

(14-98) - (14-101)

8.2.5.1.3 Datarequirementsand parameter estimation

Parameter estimation for the TC models occurs at ether the individua or aggregate levels
through standard procedures for estimating nested logit models (see Ben-Akiva and Lerman
1985). A difficulty occursif the TC mode includes a SUO NA component since choice utilities
are endogenous to the modd (i.e., they are part of the modd solution since travel codts are a
function of flow). Thisdifficulty is shared with most sochastic network equilibrium formulations
(Anas 1988). Oppenhaem (1995) provides some guiddines for deding with this difficulty.
Also, as noted previoudy in this report, there have been some progress in estimating SUO NA
parameters during the solution phase (Huang 1995). Continued research on this topic is
required.

A nested utility structure such as the one in the TC is often interpreted as a tempora
sequence, eg., a MS/INA nesting could represent the decison sequence of first choosing a
mode then a route within that mode. However, an equivdent interpretation is the nesting
represents interrelationships among choices with no implication of a choice sequence.  For
example, a MS/NA nesting structure captures the shared moda attributes of route choices
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within a particular mode. These interrelationships and their effect on nesting are reflected in the
estimated vaues of the logit parameters and consequent restrictions on those vaues ( 14-102), (
14-103). In brief, there is an inverse rdationship between the variance of an unobserved utility
and its corresponding logit parameter.  This implies a nesting structure where the variances
decrease as we move from the top leve to the bottom. In other words, the modeler must be
more certain about the observed utility specification at the lower-levels of the nesting Structure
than the top levels. Often, there is good reason to suspect a certain nesting structure (i.e,
TG/TD/IMSNA nesting dructure reflects a reasonable expectation about decreasing
randomness in the utility functions). If the parameter estimation process indicates a violation of
these conditions, the nesting structure must be respecified to reflect the estimation results.
Fortunately, thisis eadly accomplished in Oppenheimids (1995) mode.

8.2.5.1.4 Solution procedures

The convex combinaions and Evan's partid linearization agorithms can solve models derived
within the TC framework. Convex combinations can solve the UO-S-NA case with congestion
effects, while Evan's partid linearization dgorithm can solve dl other modds with congestion
effects. Other solution procedures are available if congestion effects are not considered, but
these models are not discussed here since they are less relevant to urban travel demand andysis.
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9. DISCUSSION

9.1 Modd Summary

Table 9-1 provides a summary of the network equilibrium-based travel demand models
reviewed in this report. The Sheffi (1985), T2 (Dia 1995b), Dafermos (1980), Janson (1991)
and Fisk (1980) are strictly network assignment modes (NA) predicting equilibrium flows on
a congested network. Sheffi (1985) provides a datic, deterministic equilibrium that assumes
perfect rationdity among travelers, no tempord fluctuations and no moda or link interactions
(athough the basic formulation can be extended to include this latter congderation). Janson
(1991) extends this formulation to encompass tempora dynamics, dbeit usng discrete time
intervas. T2 (Did 1995b) relaxes the drict equilibrium implied in these models to encompass
varying tradeoffs among cost function components (in particular, VOTS) among travelers.
Dafermos (1980) provides a very genera (albeit complex) NA mode that accommodate
interactions among modes and link flows.

The remaining models are combined travel demand models. They are “combined” in
the sense that they provide a combined or smultaneous equilibrium of the travel demand
components specified. Three models are d<o fixed in the sense that the analyst solves for the
travel demand components sated in the modd rather than specifying the travel demand
components of interest. These are: i) the NA/TD modd of Evans (1976); ii) the NA/MSTD
mode of FHorian and Nguyen (1978); and, iii) the STEM NA/MSTD/TG modd (Safwat and
Magnanti 1988). Admittedly, labeling these models as fixed (inflexible) may be harsh: these
models could conceivably be modified to account for different applications (eg., the MS
component of STEM can be easily removed by specifying a single mode network). However,
these modifications are ad hoc rather than inherent mode fegtures.

The combined travel demand models by Dafermos (1982), Sheffi and Daganzo (1980)
and Oppenheim (1995) dlow more flexibility in talloring the combined travel demand modd to
fit the gpplication. The Dafermos (1982) modd alows flexible specification of the MS, TD and
TG components. these functions need only satify very generd quditative conditions. The
super- and hypernetwork approach alows specification of any or al of the travel demand
components. model  specification occurs entirdly by specifying the abgract network
corresponding to desired travel demand components.  Finaly, the trip consumer gpproach of
Oppenheim (1995) offers flexibility at severd levels. Not only can the model accommodate any
or dl travel demand components but aso dlows detailed specification of the individud-leve
utility structure for travelers' decisons.

As the above summary indicates, afairly wide range of combined travel demand models
are available. Choosing a particular model can depend on a variety of factors, not the least of
which are gpplication-specific circumstances. The next subsection of this report provides a
comparison among models to help guide this selection choice.
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Model NA MS TD TG
Sheffi (1985) Static
Deterministic
No modal/link interactions
T2 (Did 1995h) Static
Deterministic
No modal/link interactions
Varying value of time
Dafermos (1980) | Static
Deterministic
Modal/link interactions
Janson (1991) Discrete-time, dynamic
No modal/link interactions
Fisk (1980) Static
Stochastic (logit)
No modal/link interactions
Evans (1976) Static Doubly constrained
Deterministic spatial interaction
No modal/link interactions model
Florian and Static Two modes (one fixed Doubly constrained
Nguyen (1978) Deterministic costs, other varying costs) | spatial interaction
No modal/link interactions Binomial logit model
STEM (Safwat Static Simultaneous with route Logit Logit-based
and Magnanti Deterministic choice accessibility
1988) No modal/link interactions function
Dafermos (1982) | Static Generd Generdl Generd
Deterministic
Modal/link interactions
Super- and Static Logit or probit Logit or probit Logit or probit
hyper-networks Deterministic
(Sheffi and No modal/link interactions
Daganzo 1980)
Trip consumer Static Nested logit Nested logit Nested logit
approach Deterministic or stochastic
(Oppenheim No modal/link interactions or
1995) two-mode, symmetric

interactions

Table 9-1: Summary of equilibrium travel demand modes

9.2 Mode Comparison

This section compares the travel demand methods discussed previoudy in the report.  This
comparison provides guidance for mode sdlection and use in forecagting and policy andyss.
Note that a definitive answer will not be forthcoming in this section. Modd selection depends
on the andys's requirements, data availability, computationd resources, and so on, that vary
subgtantialy among different andysts and organizations (and even among projects by the same
andyst within the same organization). In addition, it is not necessary for an andyst to Jbuy
into=. a sngle modd since data requirements and computational procedures can be shared
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among the different modds. A GIS platform facilitates this integration and flexibility. These
platform issues will be discussed subsequent to this section

Comparison of the travel demand models uses the following criteria (based partialy on
Did 1995a). The firg criterion is basic theory. This concerns the mgor srengths and
weaknesses of the modelids theoretica base, i.e., how well does it represent accepted travel
demand theory. The second criterion is mathematical elegance. This refers to the parsmony
and flexibility of the modeldis formalism. In this case, we are not concerned about the
Jcorrectness=. of the model per se but rather its ability to adapt to different andysis needsin a
draightforward manner. The third criterion is computational requirements and
performance. This includes the basic procedurd needs of each modelds dgorithm as well as
performance efficiency. The find criterion is data requirements and parameter estimation.
This is dso a very pragmatic concern: many practitioners may condder this to be the
fundamenta, “make or bresk” criterion. Table 9-2 provides a summary comparison based on
these criteria  In this table, a “+” indicates a mode strength and a “-“ indicates a modd
weakness.
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Model Basic theory Mathematical elegance Computational Data and parameter
performance estimation
Sheffi (1985) UO-S(-) Flexible link cost functions | Convex combinations | Standard link cost
Separable cost functions | (+) method (+) function (+)
(@)
T2 (Did UO-G (+) Flexiblelink cost functions | T2-RSD algorithm No estimation theory
1995h) Separable cost functions | (+) with parametric tree- or procedures
) building agorithm (+) | specified (-)
Explicit recognition of
varying cost tradeoffs (+)
Dafermos UO-G (+) Flexible link cost functions | Current solution No estimation theory
(1980) Non-separable cost ) method restricted to or procedures
functions (+) small problems (-) specified (-)
Janson (1991) | DUO (-/+) Inflexible link cost DTA and CDA (+) Standard link cost
Separable cost functions | functions (-) function (+)
()
Fisk (1980) SUO (+) Flexible link cost functions | Chenand Alfa(1991) | Difficult parameter
Separable cost functions | (+) modified MSA (+) estimation (-)
) UO-S can be derived asa
specid case (+)
Evans (1976) UO-S () Inflexible TD function (-) Partial linearization No estimation theory
Separable cost functions algorithm (+) or procedures
Q] specified (-)
Separable demand
function (-)
Florian and UO-S () Flexible link cost functions | Partial linearization- Parameter estimation
Nguyen Separable demand (+) related solution based on average trip
(1978) functions (-) Inflexible MS and TD agorithm (+) length (+)
functions (-)
STEM (Safwat | UO-S () Flexible link cost functions | Convex combinations | No estimation theory
and Magnanti | Separable cost functions | (+) method (+) or procedures
1988) ) Flexible TD and TG specified (-)
Separable demand functions (+)
functions (-)
Dafermos UO-G (+) Flexible link cost functions | Current solution No estimation theory
(1982) Non-separable cost +) method restricted to or procedures
functions (+) Flexible MS, TD and TG small problems (-) specified (-)
Non-separable demand components (+)
functions (+)
Super- and UO-Sfor NA (-) Flexible link cost functions | MSA slow to No estimation theory
hyper- Separable cost functions | (+) converge (-), dthough | or procedures
networks ) Flexible MS, TD and TG Chen and Alfa(1991) | specified, although
(Sheffi and Separable demand functions (+) modification faster standard random
Daganzo functions (-) with logit route choice | utility theory
1980) (+) estimation procedures
are available (+)
Trip consumer | UO-S(-) Flexible link cost functions | Convex combinations | No estimation theory
approach Separable cost functions | (+) method (+) or procedures
(Oppenheim ) Flexible MS, TD and TG Partial linearization specified, although
1995) Separable demand functions (+) agorithm (+) nested logit foundation

functions (-)
Nested logit links

Other models can be
derived as specia cases (+)

may provide basis for
parameter estimation
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individual and aggregate (+)
travel demand (+)

Table 9-2: Comparison of equilibrium travel demand models.

9.2.1 Basictheory

Equilibrium travd demand modds offer tradeoffs between theoreticd soundness and
computationd tractability. To achieve computationd tractability, most modds rely on
foundations such as UO-S network equilibrium and separable link cost functions. These require
the analyst to accept behavioral assumptions such as perfect information and decison making in
route choice, no modd or link flow interactions and a gatic equilibrium (Sheffi 1985; Evans
1976; Horian and Nguyen 1978; Safwat and Magnanti 1988; Sheffi and Daganzo 1980;
Oppenheim 1995). Conversely, modes with highly genera and redlitic equilibrium foundations
such as UO-G with non-separable link cost functions suffer from computationa difficulties
(Dafermos 1980, 1982). Between these extremes are models that sdectively relax the grict
UO-S and separability requirements.  These include alowing varying tradeoffs among cost
components in route choice (Dia 1995b), extending UO-S to encompass tempora dynamics
(Janson 1991) and dlowing for imperfect decison-making and information (Fisk 1980).

Similarly, non-separable demand functions are more redigtic than separable demand
functions but impose computationd difficulties (Dafermos 1982). Separable demand functions
dlow greater tractability but assume that mode and trip destination choice are based on travel
codis independent of other dedtinations and modd costs. Travel demand models implement
separable demand functions with varying degrees of theoretica adequacy. Severa models use
an individud-leve logit-based random utility formulation or an equivaent, aggregate-level spatid
interaction formulation for the MS, TD or TG components (Evans 1976; Florian and Nguyen
1978; Safwat and Magnanti 1988). The I1A properties inherent in these formulations cannot
account for interdependencies among unobserved choice-dependent components, this is
particularly problematic with MS since travel modes have substantid interrdlationships.  11A
properties can aso be problematic with respect to destination choice since these ignore spatia
dructurd effects, i.e, hierarchical decison-making related to perceived spatid clustering of
destinations.

Two modds provide a sdective relaxation of the drict separable, logit or spatial
interaction foundation for the higher-levdl travel demand components. The super- and
hypernetwork approach can accommodate both logit-based or probit-based choice
mechaniams for the higher-level travel demands. However, a probit-based choice mechanism
involves some computational difficulties related to the need to numericaly (as opposed to
andyticdly) evauate choice probabilities and dow convergence of the MSA dgorithm (see the
“Computational Performance’ section below). The trip consumer gpproach (Oppenheim 1995)
uses a nested logit gpproach to capture choice interdependencies without sacrificing tractability:
nested logit choice probabilities can be evduated andyticaly and efficient solution adgorithms
(convex combinations, the partid linearization agorithm) can solve the resulting combined
modedl. However, neither gpproach captures the spatid structurd effects in destination choice.
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In summary, the network-equilibrium-based travel demand modes offer tradeoffs
between theoreticd consstency and tractability. Generally, some theoretica correctness must
be sacrificed in order to achieve computationa tractability, particularly for urban-scae trave
demand andyses. Note that these theoretical restrictions are shared by the traditional
four-step approach. Continued research is required to reconcile the more genera and
theoreticaly-consstent gpproaches such as Dafermos (1980, 1982) with more efficient,
tractable solution procedures. However, a present there are models that offer sdective
relaxation of the gtrict behaviora assumptions without sacrificing tractability, in particular the T2
(Did 1995b) and DUO (Janson 1991) NA models and the trip consumer approach
(Oppenheim 1995) for combined NA/MS/TD/TG.

9.2.2 Mathematical elegance

Travel demand analyses are often used in “what-if?" scenario evauation and in projecting future
travel demands. Both applications benefit from the ability to incorporate infrastrucure and
policy vaidbles, eg., the andyst can manipulate these variables to assess the impact of
proposed infrastucture and policy changes on travel demand patterns.  This requires model
flexibility with respect to link cost and travel demand functions: these functions should be able to
incorporate a wide range of infrastructure and policy-related variables to be useful in planning
and policy andysis.

Generdly, the travel demand modds reviewed are very flexible with respect to model
specification. Link cogt functions and higher-level travel demand utilities can be specified with
arbitrary length and complexity as long as they obey very generd quditative redtrictions (eg.,
separability, non-negativity, increasing with flow). Of the travel demand modes reviewed, only
three are inflexible with respect to link cost or travel demand function specification. Janson’s
(1991) DUO modd can only accommodate travel time initslink cost functions since cumulative
route costs (travel times) are required in the model condraints. Evans (1976) and Florian and
Nguyen (1978) modds use a doubly condrained spatid interaction mode for the TD
component; this only alows travel codts to affect destination choice. In both cases the origin
outflows and destination inflows are condrained to known totals, so this is not a severe
regtriction if the andyst has a current or projected O-D matrix.

The Forian and Nguyen (1978) model dso has severe restrictions on the MS function
specification: this component is restricted to two modes of which only one has flow-dependent
travel cogts. Another source of inflexibility in this modd is the use of a single parameter to
control mode and dedtination choice disperson. This limits modd fit to empiricad modd it
and destination choice patterns.

The trip consumer gpproach (Oppenheim 1995) has particular strengths with respect to
mathematicd degance and flexibility. Firg, the same modding framework can easlly capture
any or dl of the travel demand components in an degant and consstent manner: dl trave
demand utilities are dated in a theoreticdly-condstent manner through the nested utility
gructure. In addition, the TC approach can accommodate measured utilities of arbitrary length
and form: this could dlow any number of rdlevant policy variables to be encompassed. The TC



goproach dso dlows the caculation of rigorous economic measures such as the consumer s
surplus (see Varian 1992) deriving from a given transportation policy. Findly, severd of the
other moddis (e.g., Sheffi 1985; Evans 1976; Safwat and Magnanti 1987) can be derived as
specid cases.

9.2.3 Computational performance

The computationd effort required to solve each mode is a very practicd consderation,
particularly for urban-scale gpplications. In generd, the travel demand models reviewed in this
report are computationdly tractable for urban-scde travel demand andyses. This is not
surprising since this was the mgor sdection criterion for incluson in this review. The only
models that are not (currently) feasible for urban-scale andlyses are the Dafermos (1980, 1982)
formulations. Nevertheless, this review included these models due to their theoretic apped and
mathematical elegance. Continued research is required to determine more tractable solution
agorithmsfor this generd and flexible approach.

An interesting property of the solution agorithms for most of the models reviewed in the
report isthey are sructurdly equivaent at adeep level. The convex combinations, Evans partid
linearization and MSA dgorithms dl share the following basic seps: i) direction-finding - given
a current feasible solution, find an optima direction (within the mathematica solution space) that
improves the objective function; ii) step-size - given the improvement direction, how far should
we move?, and, iii) convergence test - should we stop and accept the current solution based
on the degree of change since the lagt solution or solutions? Even further, the direction-finding
seps among the dgorithms dl share the same mgor computationa requirement, that is, solving
the set of shortest paths from each origin to al destinations based on the current flow costs.
Beyond this basc computational step, the agorithms differ with respect to how flows are
distributed among destinations based on these shortest paths.

In terms of complexity, most adgorithms are dominated by the need to solve the shortest
path trees from each origin during the direction-finding step of each iteration. Therefore, rdative
efficiency reduces to the question of how fast the dgorithm converges. In this respect,
agorithms whose direction-finding step are based on partia linearization (eg., Evans partid
linearization, FHorin and Nguyen's modified Hitchcock agorithm, the LDT STEM adgorithm)
rather than full linearization (convex combinations) will converge faster due to wider adjustment
of the O-D travel demands during each step. However, this rlaive advantage only exists with
O-D matrices that have few non-zero dements (Boyce, LeBlanc and Chon 1988). Algorithms
with step-sze optimization (al of the above dgorithms plus the Chen and Alfa (1991) modified
MSA) will converge faster than dgorithms with fixed step-szes (MSA).

Three dgorithms require an additiona complexity dimension beyond caculating shortest
path trees from each origin during each iteration. Did’s (1995b) T2-RSD agorithm for solving
the T2 NA modd requires solving, from each origin and within each iteration, a shortest path
tree for each dope interval dong the efficient frontier. However, a parametric tree-building
agorithm that modifies the tree from the previous interva rather than rebuilding from scratch
provides substantial computational savings. Janson’s (1991b) DTA procedure requires solving
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a user-desgnated number of shortest path trees from each origin during each iteration. This
number determines an incrementa assignment of flows from each origin during each iteration. In
addition, each iteration corresponds to a (smdl) time interva over the study period; this number
can be large. CDA requires smilar caculations. Therefore, dthough DTA and CDA are not
intractable for urban-scae andyses, their run-times can be long. However, this weskness will
become less problematical as the power of desktop computationd platforms continues to
increase a a geometric rate.

9.2.4 Data and parameter estimation

The data requirements for the equilibrium travel demand model are reasonable. As noted in the
introduction to this report, in generd these models require no additiond data beyond the data
required for the four-step approach. The only exception to this observation are the Dafermos
(1980, 1982) modes, these require estimation of model/link interactions and travel disutility
interaction matrices.

A weakness of many of the travel demand models reviewed in this report is the lack of
a condgent parameter estimation theory and procedure. Since these models provide a
congstent equilibrium among the travel demand components, the parameters associated with the
travel demand components should be estimated in a smultaneous (as opposed to an ad-hoc,
sequentia) manner.  However, none of the models offer a Satisticd theory for the combined
digtribution of the parameters; thisis required for developing an efficient Smultaneous estimation
procedure. A mgor reason for the lack of this theory is that most of these models come from
sientitss  with  a  operdtions research/engineering  background rather  than  an
econometric/gatistical background. A window of opportunity exists for researchers with the
proper statistical background to contribute grestly to thisfield.

Some of the modds reviewed offer informa guideines with respect to parameter
edimation. Techniques are available for estimating the link cost function parameters in severd
NA modds (eg, Fisk 1991). Horian and Nguyen (1978) provide some suggestions for
edimating their combined NA/MSTD modd, dthough the tractable estimation procedure
requires a Single parameter shared among the MS and TD components. Sheffi and Daganzo's
(1980) super- and hypernetwork approach can use standard logit and probit estimation
procedures, dthough ill required are methodologies for smultaneous estimation among these
components. The trip consumer gpproach (Oppenheim 1995) offers considerable promise for
smultaneous parameter estimation since a unified and congstent utility structure (the nested logit
structure) underlies the modd. Oppenheim (1995) provides detailed discussion of parameter
esimation issues but does not offer a consstent and efficient estimation procedure per se; a
window of opportunity exigsin this regard.

9.3 Continued Research and Development | ssues

Although this report’s objective is an accessible review of equilibrium travel demand models
rather than the research frontiers, this review nevertheless suggests two mgor research and
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development issues. These concern requirements for wider application of equilibrium trave
demand models.

9.3.1 Research and development issue 1. Specification and development of a
computational toolkit for equilibrium travel demand modeling.

The increasing use of geographic information systems for trangportation (GIS-T) provides an
excdlent platform for developing equilibrium travel demand modding software. A mgor benefit
of GIS-T is database management and decision support. In the former case, GIS provides an
efficient platform for building and maintaining the trangportation database.  Although trave
demand data requirements includes a full range of spatia, aspatia and network data, the
common unifying characteristic is location-based referencing (Shaw 1993). A GIS can not only
maintain the primary data using location references but can dso cdculate critica spatid and
topologica properties required in the travel demand mode (eg., joins between origin and
degtination centroids and the trangportation network). In the latter case, a GIS provides query-
support as well as mapping of mode results within the geographic context of the study area and
with other ancillary but supporting cartographic information. This benefits analyses and policy
decison processes (Armstrong et al. 1992).

While database management and decision support are the core benefits of GIST,
another benefit of a GIS is support for modelbase management. The user interface of a GIS
facilitates the treatment of models and modde components as encapsulated objects which hide
procedural details from the user. Ingtead, users manipulate these entities based on their
attributes, behavior and relationships with other entities. This adlows users to concentrate on
concepts and substantive issues (e.g., data requirements, solution properties) instead of
implementation details (Khoshafian and Abnous 1995). Note that these benefits can be redized
from any computationa platform that supports user interfaces (and especidly graphicd user
interfaces or GUIs); however, these capabilities enhance the core role of GIS as a database
management and decision support technique for trangportation modeling.

Using a moddbase management gpproach to developing equilibrium travel demand
modeling software offers a second mgor benfit, thet is, the ability to integrate different trave
demand modes based on shared computationa requirements and model components. The
detailed review of the equilibrium travel demand modds in Section 8 and the discusson of the
computational performance issue previoudy in this section clearly illugtrates the common
structure and components shared among the models. Note that severd of the UO-S modes
are derived from the basc UO-S NA modd smply by adding additional components to the
objective function and corresponding congraints to the congraint set. In addition, the solution
procedures share the same fundamentd structure of “direction-finding, move-Sze, convergence
tex” Smilaly, the UO-G models share the same fundamentd variationd inequdity (V1)
dructure. In turn, a VI formulaion can generdize the convex combinaions method used in
severd modes (Magnanti and Perakis 1993). Findly, the Fisk (1980) SUO NA modd shares
a amilar structure to UO-S NA and can collgpse to this latter modd under certain parameter
Setings.
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Identifying the fundamenta objects in the equilibrium travel demand modds can dlow
the specification of a computational toolkit to support several of the equilibrium trave
demand modd s within the same computationd platform. Since many key computationa objects
are shared, implementing multiple travel demand modes within the same platform can be
accomplished efficiently. Then, insead of forcing a travel demand andlyss into the mode
avalable in a given GIS software, the practitioner can access the model or modds most
aopropriate for the research question a hand. This could greatly improve the flexibility and
relevance of equilibrium travel demand modding.

Miller and Storm (1996) identified an effective generic GIS desgn to support
equilibrium travel demand modding. This desgn partitions the sysem’s components among
GIS and non-GIS platforms according to the components functiond requirements. The GIS
serves as a spatial database manager and GUI to the modding system. This includes a network
database design that maximizes the likelihood of database integrity after updates. The design
exploits the ability of a GIS to maintain route data structures with a one-to-many relaionship
with the underlying topologica network. The GIS aso provides a “ scenario editor” and “result
andyzer” that exploitsits user interface, cartographic visudization and spatial query capabilities.
The travel demand solution agorithm resdes outsde the GIS; this provides subgtantia
computationa savings since the computationa overhead required to access data with user-built
functions within a GIS can be high. Since equilibrium travel demand models use shortest path
cdculations and flow updating as their primary solution mechaniams, the GIS can transfer the
information into a network data Structure than can be supported and accessed independently.
After achieving an equilibrium solution, the GIS can access this network-based data for
visudization and query cagpabilities.

The heterogeneous design strategy discussed by Miller and Storm (1996) indicates the
desrability of component sharing and interoperability among the objects in the computationd
toolkit. This would alow the travel demand models to be supported and interfaced across a
vaiety of computationa platforms and software.  This requires the computationa tookit
components to have the following features (Khoshafian and Abnous 1995): i) binary
representation or the ability of components to be written in different languages but have
standard interfaces to support interoperability among objects; ii) standard user interfaces or a
common, recognized way in which users interface with the object; iii) standard storage
representation or a common method for storing components in a nested or hierarchica
manner; and, iv) distributed computing support or standards for the interaction of components
in a digributed architecture. These standards will dlow interoperability among the trave
demand toolkit components, computational platforms, GIS software and other, supporting
software.

A crucd firg sep in developing an equilibrium travel demand modding toolkit is a
dructured andysis of the mode components in terms of their signatures (inputs and outputs)
and behaviors. As the preceding discussion should suggest, an gppropriate technique is
object-oriented analysis and design (Booch 1994; Rumbaugh et al. 1991). This is a
graphics-oriented forma modeling technique that specifies what a system is (andysis) and how
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it should be desgned. Mogt importantly, this type of structured analysis technique embodies
severd of the critica features necessary for a robust and effective computationd toolkit,
including encapsulation of procedures for binary representation, identifying standard interfaces
through abstract data types and standard storage representing using inheritance and aggregation.
An object-oriented andyss and design will alow specification of standards for the equilibrium
travel demand toolkit components; this will dlow GIS or other software vendors to develop
interoperable and reusable components at the onset rather than having to re-engineer these a a
later date.

9.3.2 Research and development issue 2: Development of a model testbed

Closdy related to research and development issue 1 is the specification and development of a
platform for extensve empiricd testing of the equilibrium travd demand models. As noted
previoudy, equilibrium travel demand modes have only been subjected to limited testing
(although these initid results are encouraging, a least with respect to the four-step gpproach).
Continued and extensve testing and evauation of the equilibrium travel demand models, as well
as other competing approaches, is warranted.

The bascideaisto develop amode testbed that will support empiricad evaduation of a
variety of travel demand models. The “testbed” should be a robust and flexible computationa
platform that will support goodness-of-fit comparisons among different travel demand models.
This should include modules that support the travel demand models, smulation of travel demand
scenarios, graphics for summarizing mode fit and a software development environment for
generating required software components (see Summers and Southworth 1998). This testbed
should not be redricted to equilibrium travel demand models, other gpproaches such as
micros mulation-based models should be supported and tested within the system.

Devdopment of a travel demand modding testbed will be imperative given the
continued development and deployment of intdligent trangportation systems (ITS). While
theory can not be ignored, identifying ITS-gppropriate models cannot be identified only from
firgt principles. The close coupling of transportation systems with ITS dictates the need for
modd vdidity relative to the type of control imposed by the ITS in addition to the traditiond
vdidity rdative to an empiricd dataset. Since varied ITS environments will dictate diverse
modeling approaches, the testbed should support the economica development and testing of
travel demand models relative to planned ITS deployments (Summers and Southworth 1998).
The continuing development of dynamic equilibrium travel demand modds can support ITS,
athough extensve testing of these and other gpproachesis required.

9.3.3 Research and development issue 3: Development of a combined statistical
distribution theory and simultaneous parameter estimation procedures.

As mentioned previoudy in this section, a weakness of equilibrium travel demand models is a
lack of detidtica digtribution theory for the combined travel demand components within each
equilibrium model. Note that this weskness is shared with the 4-step gpproach: a consstent
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combined gtatistica distribution theory does not exist for the sequentid travel demand estimation
procedure. However, this weakness is not as gpparent in the 4-step approach sinceit artificidly
separates the travel demand modeing components. When these components are embedded in
an equilibrium framework, this weakness becomes more obvious.

Some discussion of these combined estimation issues does exist in the literature (eg.,
Anas 1988; Horien and Nguyen 1978; Oppenheim 1995). However, no existing mode has a
combined datigticd digribution theory and an efficient and unbiased smultaneous estimation
procedure for al parameters. A possible theoretica foundation for this theory and procedure
may be derived usng the entropy-maximizing framework of Wilson (1967, 1974). This
framework demongtrates that spatia interaction models provide the mogt likely trip distribution
given known aggregate information about the system (e.g., origins outflows, destination inflows,
travel cods, totd trips). This theory supports a highly generd information-minimizing approach
to spatid interaction parameter estimation (see Fotheringham and O'Kelly 1989). The difficulty
in combined travel demand parameter estimation is that travel codts, a key component of the
system, are endogenous to the modd (see Anas 1988 for ardated discussion).

Oppenheim’s (1995) trip consumer (TC) modd provides possibly the best mode
support for parameter estimation. The TC modd is condstent with a combined, nested logit
utility dructure at the individud levd. The nested logit dructure can support effective
smultaneous parameter estimation.  Oppenheim (1995, Chp. 7) provide a lucid discusson of
the parameter edtimation issues, paticularly with respect to maximum likelihood estimation
procedures. Continued research dong this lines, most likely using the TC modd as a bass, is
required for effective gpplication of equilibrium travel demand models.
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10. CONCLUSION

A potentidly accessble modding framework that resolves the magor flaws of the 4-step
goproach exids in the trave demand andyss literature.  Equilibrium travel demand models
generate condgtent edtimates of trip generation, trip distribution, moda split and network
assignment without mgor increases in computationa nor data requirements relative to the four-
step approach. In addition, recent research has improved the behaviora generdity of these
models, linked aggregate travel demands to individua-level choice theory in a theoreticaly-
congstent manner and developed linkages to dynamic travel demand estimation.

This research report provides a guide to the theory and practice of equilibrium travel
demand modeling. The orientation of this report towards an accessible review intends to
disseminate this information among a wide audience of current and emerging trangportation
planners and andyds. In addition, this report briefly identifies two mgor research and
development issues to support wider application of equilibrium travel demand models.

As Boyce, Zhang and Lupa (1994) argue, continued progress in improving travel
demand forecasts can only occur with increased understanding of the equilibrium approach.
Professonals must ing s that vendors provide software that implement the equilibrium gpproach
and ingructors must train the emerging generation of transportation planners and anaydts in
these modeling principles.  This report supports this view by providing an initid step towards
wider gpplication of the equilibrium gpproach.
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12. APPENDIX: SUMMARY OF MAJOR NOTATION AND DEFINITIONS

This appendix summarizes the basic notation and network flow properties that characterize
network equilibrium-based travel demand modds. The notation follows (but expands on)
Fernandez and Friesz (1983).

12.1 Basic Notation

Networ k
G =[N,A] Directed graph representing transportation network, (12-1)
where N isafinite set of network nodesand A isa
set of network arcs
| Set of origins, | I N (12-2)
J Set of degtinations, JI N (12-3)
a A network arc (12-4)
a° (n,n,)in,n, TN
r A network path (12-5)
(o {(ni,nk), (ne,n), ...,(nl,nm),(nm,nj) }
R Set of dl pathsin G (12-6)
R, Set of dl pathsthat connect O-D pair i j (12-7)
K Set of modes (12-8)
dk Arc-path incidence variable; equal to oneif arca (12-9)
belongs to path r and alows flows by mode k
Arc flowsand costs
X Mode k flow onarc a (12-10)
f, Totd flow onarca (12-11)
F Set of dl arc flows (12-12)
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=

ck Average travel cost for mode k user on arc a (12-13)
p Random variable representing perceived travel cost (12-14)
for modek user onarca
Path flows and costs
h Mode k flow on path r (12-15)
H Set of al path flows (12-16)
Ct Average travel cost for mode k user on path r; (12-17)
Ct=ad;c
al A
Cijk* Minimum average travel cost for mode k user (12-18)
between O-D pair ij
C Set of minimum travel codts for al modes and O-D (12-19)
pairs
P Random variable representing the perceived travel ( 12-20)
cost for mode k on path r
M Margind travel cost on path r for amodek user; (12-21)
M k - T[CI!(
r ﬂhrk
M Minimum margind travel cost between O-D pair ij (12-22)
for mode k user
Aggregate travel demands
! —
D; Tota mode k flow between O-D pair i ] (12-23)
di}‘ 0 (Dijk) -1 Travel disutility'as.s'ociated with modek trave (12-24)
between O-D pair i ]
D Totd flow on path r between O-D pair i | (12-25)
D Tota outflow from origin i (12-26)
D, Totd inflow to destination j (12-27)
D, Non-travelersin origin i (12-28)
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Number of potentid travelersin origin i

(12-29)
12.2 Special case notation
Dynamic flow notation (Janson 1991b)
t Discrete time interva ( 12-30)
d Origin departure time interva (12-31)
Dt Length of each time interva (12-32)
T Tota number of time intervas (12-33)
hrd Flow on path r that departed during time interva d (12-34)
c’ Average travel cost on path r for travelers who departed ( 12-35)
during timeintervd d
C.?* Minimum average travel cost between O-D pair i,j for (12-36)
travelers who departed during time interval d
dfa Tempora arc-path incidence variable; equal to one if trips (12-37)
departing during time interval d and assigned path r use
arc a during timeintervd t, zero otherwise
brdn Travel time of path r from its origin to node n for travelers (12-39)
depating intimeinterva d
A, Set of al arcsincident to node n (12-39)
T2 notation (Dial 1995a, 1995b, 1996)
da(fa) a determinigtic disutility (d-disutility) associated with ( 12-40)
flowonaca
Sa( fa) a dochedicdly-weighted  disutility  (s-disutility) (12-41)
associated with flow onarc a
w a stochastic parameter (s-weight) capturing varying (12-42)

reections among travelersto s, ( f,)
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sweight’s fixed and known probability dengty function

s - (12-43)
specificto O-D pair i,
f.(w) Fow from origin i with sweight #: on arc a (12-44)
fa Totd flow on arc a from origin i ( 12-45)
{a a= (nk, J)} set of arcs whose to-nodes are destinations ( 12-46)
{a: a=(j.n, )} set of arcs whose from-nodes are destinations (12-47)
Super- and hyper-network notation (Sheffi and Dagnazo 1980)
N Set of basic nodes (12-48)
v Set of non-basic or “virtud” nodes, 1,J1 V (12-49)
A Set of basicarcs A° {(n,.n,,):,mi N} (12-50)
E Set of entrance/egress arcs (12-51)
E :{(n ,n,),...,(nm,nj): iTV,IT N¢mT Ngj1 V}
N;¢ Set of basc nodes connected to origin i (i.e, (12-52)
“outbound” basic nodes connected to i)
N« Set of basic nodes connected to degtination j (i.e, (12-53)
“inbound” basic nodes connected to destination j)
N ¢ Set of dl outbound basic nodes (12-54)
N « Set of al inbound basic nodes ( 12-55)
12.3 Additional Definitions
12.3.1 Basic flow feasibility requirements
{H}3 0 (12-56)
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ah=pf " @ik (12-57)
MR

f =3d" h " (ak) (12-58)

riR
12.3.2 Separable versus non-separable cost functions
Separable codt functions:
¢ =6 (f)) (12-59)
Non-separable cost functions:
¢S =ck(F) ( 12-60)

12.3.3 Separable versus non-separable demand functions

Separable demand functions:
k — k k
Dy =05 (G (12-61)

Non-separable demand functions:

Di'lf = Dijk(Q) (12-62)

12.3.4 Other conditions
Cogt function non-negetivity:

x3 0P c,(x)30 (12-63)
Codt function increasing with respect to flow levels:

Te(¥ .o »ala (12-64)
q x
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13. APPENDIX: FORMAL PROPERTIES OF TRANSPORTATION EQUILIBRIA

13.1 Network Equilibria

13.1.1 User optimal (UO)

13.1.1.1 User optimal - gtrict conditions (UO-S)
A vector of path flows H isaUO-Sflow if it isfeasible and (Fernandez and Friesz 1983):

h*>0p Cf=C¢ " (i,j,krT R) (13-1)

C>CiP h=0 " (ijkrl R) (13-2)

13.1.1.2 User optimal - general conditions (UO-G)
A vector of path flows H isaUO-G flow if (Smith 1979):

C(H)XH- H)30 " HTW (13-3)

where Wisthe convex st of feasible path flows h*

13.1.2 Dynamic user optimal (DUO)
A vector of (discrete time) path flows HY, d = 1, ... , T, is adynamic user optima flow if it is
feasble (see equations ( 14-54)- ( 14-57)) and (Janson 1991b):

d d_~d u N N i1 iT
h' >0b C"=C;. dlI T,rl R,il1,j1J) (13-4)

C'sC.bh'=0 "@ITriR,iTIjlJ) (13-5)

13.1.3 System optimal (SO)
A vector of path flows H isa SO flow if it isfeasible and (Fernandez and Friesz 1983):



h*>0p Mrk=|v|”_k* " (i), kr TRy (13-6)

M >ME P =0 " (i,jkrT Ry) (13-7)

13.1.4 Stochastic user optimal (SUO)
A flow pattern Hisa SUO if it isfeasible and (Daganzo and Sheffi 1977; Sheffi 1985):

W =pipt " (i,ikrTR) (13-8)
where:
p‘szr[PrkﬁPs" "r1si RJ.|C] (13-9)
P“=c‘+ef (13-10)
eef]=0p gP]=c¢ (13-12)

where C isthe vector of path travel cods.

13.2 Market Equilibrium

A flow pattern (H,C*) is a UO-S-based market equilibrium with combined TG, TD, MS and

NA if it stifies the following sysem of non-linear equations (Aashtiani and Magnanti 1981,
Fernandez and Friesz 1983):

(CE(H)- COR =0 " (i,j,krT R) (13-12)

CK(H)- cijk* 30 " (i,j,krl Ry) (13-13)

4 h-DiC)=0 " (,j.K (13-14)
TR
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CK(H)=QdSci(H) " (i,j.krT R) (13-15)

ar “a
al L

(H,C)3*0 (13-16)
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14. APPENDIX: MODEL FORMULATIONS

14.1 UO-S-based Approaches

14.1.1 NA (Sheffi 1985)
Assumptions:

i) one mode (although multi-mode extensons are possible;
i) separable cost functions ( 12-59);

i) non-negetive cost functions ( 12-63);

iv) increasing cogt functions ( 12-64);

v) D; fixed and exogenous.

Optimization problem:
fa
MIN 3§ (F.(x) dx
a o
{f}
subject to:

14.1.2 Combined TD/NA (Evans 1976)
Assumptions:
i) onemode,
i) separable cost functions ( 12-59);
iil) non-negetive cost functions ( 12-63);
Iv) increasing cogt functions ( 12-64);
v) D,D, fixed and exogenous,

vi) separable demand functions ( 12-61) with the following format:
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(14-1)

(14-2)

(14-3)

(14-4)



Optimization problem:
l o O [N
NG Dad (DD, - D)+ & ¢ralx) dx

{D,. 1}

subject to:
ah=p "ill,jlJ
MR
fa = é. dar hf aT A
rlR
o ~
ap=p "jlJ
anp =D "ill
j
h30 "riR
D20 "ill,jlJ

14.1.3 Combined TD/MS/NA - Florian and Nguyen (1978)
Assumptions:
i) two modes (*automohbile’ and “public trangt”);
i) separable cogt functions (automobile) ( 12-59);
i) non-negative cost functions (automobile) ( 12-63);
iv) increasing cost functions (automobile) ( 12-64);
V) ¢ (public trandt) fixed and exogenous;

vi) D, D; fixed and exogenous,

vii) separable demand functions ( 12-61) with the following format:
Dy pexp(-b Ci.) " il 1LjT Jk=k,k,
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(14-5)

(14-6)

(14-7)

(14-8)
(14-9)
(14-10)
(14-11)

(14-12)

(14-13)



vi)  pe exp(b Cl) B — (14-14)
D¢ + D} - exp(b C.Ti)"'exp(b Q:-(f) 1 d K=K,

where k; indicates automobile mode and k, indicates public trangit.

Optimization problem:
| J | J
MIN b4 & D InDf +§ & Di(bInDle +Ck) (14-15)
i=1 j=1 if=l j=1
{Dl,DF, 1.} + ¢ra(x)ax
alA g
subject to:
J K .
a(pr+pp)=p, "il | (14-16)
j=1
&1 -
a(pf+p¥)=p jl3J (14-17)
i=1
ahe=bpe il ljld (14-18)
MR
g d o
fb=aa adsh® +f° (14-19)
i=1 j=1rlR;
k TR . 2 ~
D¥20 " il 1,ji ki K (14-20)

h*30 " rl RKIK (14-21)

where f¢ is the public transit mode's contribution to flow on arc a; this may be zero if the
public trangt route is separate from the street network.

14.1.4 Combined TG/TD/MS/NA - STEM (Safwat and Magnanti 1988)
Assumptions:

) Ge=[NgAq, Ne= UN¥, Ac= U A (14-22)
k=1 k=1

where N A are the nodes and arcs of the network for
mode k;
i) separable cost functions ( 12-59);

i) non-negetive cost functions ( 12-63);
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IvV) increasing cod functions ( 12-64);
V) separable demand functions ( 12-61) with the following format:

D =D exp(- qGC. + Bi) (14-23)
i iR
a eXp(' q Qk* + a<)
kIl
where:
= i G i
maxi 0,Ing exp(- qC;- + Ej)' (14-25)
[ it %
accesshility variable that messures the expected utility of
travel from origin i (endogenous);
E= compodite variable measuring the effect of non-transportation (14-26)
factors on trave flow from origin i (exogenous);
B= composite variable measuring the attractiveness of destination (14-27)

J (exogenous);

Optimization problem (K © 1 since modal attributes are captured by the subnetworks):

(14-28)
MIN é_i[a§ +a,S- (a.$+E.)|n(a.3+E)]+
{S,Dij,fa} i qi i i i i i
fa
é. ié (Dlj InD; - B,D, - Dij)+ é (\}:a(x)dx
i i al Ato
subject to:
é.Dij:aiS+E" il (14-29)
iha
éhr:Dij T, ( 14-30)
MR
fa:é_ dar hr "al A¢ (14-31)
rIR
§e0"ill (14-32)
D20 "ill,jTJ (14-33)
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14.2 UO-G-based approaches

14.2.1 T2 NA (Dial 1995b)
Assumptions:
i) onemode;
i) separable cost functions ( 12-59) in the following formet:

c,© dy(f)+ws,(1,)
iii) Dj; fixed and exogenous
Optimization problem:

(14-34)

(14-35)

A flow pattern F~ = { fi;} is user optimal-T2 (UO-T2) if and only if it is feasible and a solution

to the following variaiond inequdity problem:

A8 & (d.(1) +ws (1)) (faw)- Ti(w))ow 30

will al A

subject to:

14.2.2 NA/MS (Dafermos 1980)
Assumptions:
i) oneor more modes,
i) non-separable cost functions ( 12-60) in the following format:

C,(F)=GxF+b
where:
G= a matrix capturing the interactions among links in
the network
b= a vector containing datic (e.g., base) costs for

each network arc.
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(14-37)

(14-38)

( 14-39)

(14-40)



=~

1)) . . . A cku .
Jacobian matrix of the cost functio ., 1S
ns, é—F

c

D
o
[ o

14-41
positive definite ( )

Optimization problem:
A flow pattern F isUO-G if and only if it feesible (( 14-2) - ( 14-4)) and:

C(E)(F-E)?’O " Flk (14-42)

where ¢ isthe vector of dl arc costs and k isthe set of feasble arc flows.

14.2.3 Combined TG/TD/MS/NA (Dafermos 1982)
i) oneor more modes,

i) non-separable cost functions ( 12-60) in the formet of ( 14-38);
i) Jacobian matrix of the cogt functions, is pogtive definite ( 14-41);
iv) non-separable demand functions ( 12-62) in the following format
dili((DiIi() =M xDj +s (14-43)

= amatrix providing trave disutility interactions among (14-44)
O-D flows.

s= a vector containing datic (eg., base) disutilities

: (14-45)
between O-D pairs.

V) . . . . éfd U . (14-46)
Jacobian matrix of the inverse demand functions, e—’u is
pogitive definite

Given the assumptions above, an (arc) flow and travel demand pattern (F,D) is a

market equilibrium with combined TG/TD/MSNA if it sidfies the following variationd
inequaity problem (Dafermos 1982):
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c(F)(F- F)- d(D)XD-D)2 0 " F,DI G (14-47)
where d isthe vector of all travel disutilities ( 12-24) and G is the st of feasible flow patters
and travel demands.

The VI problem ( 14-47) is a generdization of the following individud-leved, UO-S
based market equilibrium conditions:

. ~keey 1 =00 ifR>0 - (14-48)
d; (D;y)- C(F) %EO, it hrk -0 k,w,rl R,)
If (F,D)isademand pattern that satisfies ( 14-48) then the following will be true:
C ()M - h- di(D)M-h)2 0 " (i,j.krT R) (14-49)

where h* isthe route flow implied by F . Expressing the firgt half of ( 14-49) in terms of arc
flows only and the second haf in travel demands only and then summing across user classes and

routes leads directly to ( 14-47). The aggregate level statement relaxes the strict UO-S
assumptions and dlows individud variations in behavior within the aggregate condraints.

14.3 DUO-based approaches

14.3.1 DUO NA (Janson 1991b)
Assumptions:

i) snglemode

i) separable cost functions ( 12-61);

i) non-negetive cost functions ( 12-63);

iv) increasing cogt functions ( 12-64);

v) D; fixed and exogenous

vi) study time period divided into discretetimeintervals t =1,..., T
Mode structure;

( 14-50)

subject to:
(static congtraints)
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fb=aahdy "alAtlT (14-51)

MR, T
d _ o] d " . - T
D; -%_h L ddlT (14-52)
. o -
hy 20 "rTRATT (14-53)
(dynamic contraints)
adi=1 "riRal AtITdIT (14-54)
T
b= aci(fi)dy "riRNINEIT (14-55)
tiTal A,
[b,- tDdi £0 * rT Rni Nd T Tti T,al A (14-56)
[0, - ¢-DDdy, 20 " rT RNl NdTTtl T,al A, (14-57)

14.4 SUO-based Approaches

14.4.1 SUE NA (Fisk 1980)
Assumptions:
i) onemode,
i) separable cost functions ( 12-59);
i) non-negetive cost functions ( 12-63);
IvV) increasing cod functions ( 12-64);
v) D, fixed and exogenous
vi) route costs are random variables consgsting of an observable or sructurd

component and an unobservable or stochastic component whose expected vaue is
zero (13-10), (13-11).

Optimization problem:

fa
MIN 28 & &hinh+& (X dx (14-58)

i jTarmR, alAg
{h.t.}
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subject to:

14.4.2 Super- and hyper-networks (Sheffi and Daganzo 1980)

Assumptions:
i) G = [ N, K]
i) N=NEV
ii) A=AEE

iv) c, fixedandexogenous" al E;

v) separable cost functions( 12-59) " al A;
vi) non-negative cost functions ( 12-63)" al A;
vii) incressing cost function ( 12-64)" al A;

Hypernetwork equilibrium conditions:
DF=& & Dpl, " 11 Nemi Ne

it i

ah=Dg¢ " ITNemi N@iTI1,jTJ
TR,

C,-C,%0 "rIR,"ITNmI N«

(C.-c,.)h=0 "riR,ITNemi Ne

where:
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( 14-60)

( 14-61)

(14-62)
(14-63)

( 14-64)

( 14-65)
( 14-66)
(14-67)
(14-68)

( 14-69)



ol = Arob[R£R) " ni Ngol Ng (14-70)

Rn = R'+C, +P (14-71)
Pl = stochastic cogt on entrance arc (n,n,) 1 E (14-72)
pi stochastic cost on egress arc (nm, n, )T E (14-73)
C = minimum pah cos between basc network (14-74)

entrance/egress pair |,m

14.5 Combined UO-SSUO Approaches

14.5.1 Combined TG/TD/MSINA - Trip Consumer Approach (Oppenheim 1995)
Assumptions:

i) oneor more modes,

i) non-negative cost functions ( 12-63);

i) increesing cod functions ( 12-64);
Iv) separable cost functions ( 12-59) (dthough Oppenheim (1995) discusses atwo-

mode non-separable cost function verson of the modd).

Consumer utility maximization problem (Varian 1992):

MAX U(y) (14-75)
{v}
subject to:
py=b (14-76)
ylhy (14-77)

where U(y) is the utility of choice y, y is an attribute vector, p is a vector of prices associated
with each attribute, b is abudget congtraint and Y is the feasible solution space.
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Indirect and expected utilities:

TG Indirect *i = b (V + *i .
utility: Vi t i W ) (14-78)
Expected - 1 ~
utility Wi = b_t Inj1 + exp(bt(vi + Wi||+1))] (14-79)
D Indirect Jin = bg (Vij + Wi+
utility Uin = b (Vi * Wi ( 14-80)
Expected
Uti“ty V-\7ij|l = — |nea EX@ §/ 'J"*lﬂgu (14'81)
d
MS Indirect Jirn = Pm (Vijm +
utility D m Vim * Wiy (14-82)
Expected _ 1 é N U
utility Wi = b_m Iné] eXp(bm(Vijm + Wijmll+1))EI (14-83)
NA (UO-9) Indirect o = - ttim - Gimr
utility 9 A (14-84)
Expected C = X
uility Gire = MiNig Gym (14-85)
NA (SUO) Indirect Jimell = Br Giinr
utility Yimrt = Br S ( 14-86)
Expa:ted - 1 é o u
ili o= — Inxa br i)z 14-87
utility Wijn br n@ p exp( rgljmr)g ( )
Gormon-form utility structure (Varian 1992):
U(p.z,.b,)=f(p.z,) +b,o(p) (14-88)

where:
p =
Z] =

vector of observed prices or costs,
vector of observed attributes for individud n;

budget of individud n.
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Direct utilities (objective function components):

TG —-&(DInD+D,InD,)-  UD (14-89)
t il i
TD: l1os 2 2
ora a b InD; - a a YD, (14-90)
d il jT3 it T
MS. bi.é. A 4 ofInDf- 3 & & Uiy (14-91)
k i1 jTIKIK i1 jTIKiK
NA-D fa
t& & il ()
kiKal A g
NA-S
1 "
raadadahinhi+taa gr(xdx (14-93)
roill TIKIKR; kiK al A o
Travel demand condraints:
TGC: D+D,=8B e (14-94)
. 0 _ Y
TDC: jaT.J D, =D, il (14-95)
MSC: 3 Df=D, (14-96)
K K
. o k — Kk o =7 ) 1
NAC: Tath =Dbf " il Ll 3kl K (14-97)
Non-negativity condraints.
3 n
D20 "ill (14-98)
3 il
Dij 0 Il I,j | J (14_99)
k n e
D¥20 il 1,j1 JkI K (14-100)
” — —
h*3 0 ri Rkl K (14-101)
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Parameter restrictions:

I bjbl"
—r* _ |=1..,L
b, =1 b "'~ b
t b, =1L
Equation ( 14-102) implies

bi£..£b
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(14-102)

(14-103)



